OpenCV 图像直方图

OpenCV 图像直方图基础概念

图像直方图是统计图像像素强度分布的图形表示,用于分析图像的亮度、对比度等特征。在OpenCV中,直方图可以针对灰度图像或彩色图像的各个通道单独计算。

灰度图像直方图计算

以下代码展示如何计算并绘制灰度图像的直方图:

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取灰度图像
gray_img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

# 计算直方图
hist = cv2.calcHist([gray_img], [0], None, [256], [0, 256])

# 绘制直方图
plt.figure()
plt.title('Grayscale Histogram')
plt.xlabel('Bins')
plt.ylabel('Pixel Count')
plt.plot(hist)
plt.xlim([0, 256])
plt.show()

彩色图像直方图计算

对于彩色图像(BGR格式),可以分别计算每个通道的直方图:

# 读取彩色图像
color_img = cv2.imread('image.jpg')

# 分离通道
channels = cv2.split(color_img)
colors = ('b', 'g', 'r')

# 绘制多通道直方图
plt.figure()
plt.title('Color Histogram')
plt.xlabel('Bins')
plt.ylabel('Pixel Count')

for channel, color in zip(channels, colors):
    hist = cv2.calcHist([channel], [0], None, [256], [0, 256])
    plt.plot(hist, color=color)

plt.xlim([0, 256])
plt.show()

直方图均衡化

直方图均衡化通过扩展像素强度范围来增强图像对比度,适用于低对比度图像。

# 灰度图像均衡化
equalized_img = cv2.equalizeHist(gray_img)

# 显示结果
cv2.imshow('Original', gray_img)
cv2.imshow('Equalized', equalized_img)
cv2.waitKey(0)

自适应直方图均衡化(CLAHE)

CLAHE通过限制局部对比度增强来避免噪声放大:

# 创建CLAHE对象
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
clahe_img = clahe.apply(gray_img)

# 显示结果
cv2.imshow('CLAHE Result', clahe_img)
cv2.waitKey(0)

直方图比较

OpenCV提供直方图相似度比较方法,常用于图像匹配:

# 读取两张图像
img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)

# 计算直方图
hist1 = cv2.calcHist([img1], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([img2], [0], None, [256], [0, 256])

# 比较直方图(相关性方法)
similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
print(f'Similarity Score: {similarity:.2f}')

二维直方图(H-S直方图)

对于HSV图像,可以计算色调(H)和饱和度(S)的二维直方图:

# 转换为HSV格式
hsv_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2HSV)

# 计算H-S直方图
hist_2d = cv2.calcHist([hsv_img], [0, 1], None, [180, 256], [0, 180, 0, 256])

# 显示热力图
plt.imshow(hist_2d, interpolation='nearest')
plt.title('2D Histogram (H-S)')
plt.show()

直方图反向投影

反向投影用于目标检测,通过直方图模型在图像中查找相似区域:

# 提取目标区域ROI
roi = color_img[100:200, 100:200]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

# 计算ROI直方图
roi_hist = cv2.calcHist([hsv_roi], [0, 1], None, [180, 256], [0, 180, 0, 256])

# 归一化并反向投影
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
back_proj = cv2.calcBackProject([hsv_img], [0, 1], roi_hist, [0, 180, 0, 256], scale=1)

# 显示结果
cv2.imshow('Back Projection', back_proj)
cv2.waitKey(0)

以上代码覆盖了OpenCV直方图的核心操作,包括计算、均衡化、比较和反向投影。实际应用中可根据需求调整参数(如直方图bin数量、CLAHE的网格大小等)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值