大规模R-CNN的分类器自适应量化
1. 引言
在计算机视觉领域,特别是在大规模图像数据库中进行对象检测和分类时,R-CNN(Region-based Convolutional Neural Network)已经成为一种广泛应用的技术。然而,随着数据量的增长,传统的R-CNN方法面临着巨大的计算量和内存占用问题。为了应对这些挑战,研究人员提出了多种优化方案,其中之一便是分类器自适应量化。这种方法不仅提高了R-CNN的效率,还保持了其在大规模数据集上的高性能。
2. R-CNN的基本原理
R-CNN是一种基于深度学习的对象检测框架,它通过以下步骤实现目标检测:
- 对象提案检测 :使用选择性搜索(Selective Search)算法生成候选区域。
- 特征提取 :从每个候选区域中提取深度卷积神经网络(DCNN)特征。
- 分类 :使用支持向量机(SVM)对提取的特征进行分类,计算分类得分 ( S(v_{i,j}) = w \cdot v_{i,j} - b ),其中 ( w ) 和 ( b ) 分别代表SVM分类器的超平面和偏置。
在大规模数据库中,每个图像大约会生成2000个候选区域,每个区域对应一个4096维的特征向量。因此,直接对所有特征向量进行分类计算会带来极大的计算负担和内存消耗。
3. 分类器自适应量化
为了解决上述问题,分类器自适应量化(Classifier Adaptive Quantization,