多分类SVM与K均值算法实现

50、证明当类别数K = 2时,Ehww( ̂W)和Ehcs( ̂W)都会简化为用于二分类数据集的铰链损失Eh( ̂�)。

推导思路可从 $ Eh_{ww}(\hat{W}) $、$ Eh_{cs}(\hat{W}) $ 和 $ Eh(\hat{W}) $ 的定义式出发,当 $ K = 2 $ 时,对 $ Eh_{ww}(\hat{W}) $ 和 $ Eh_{cs}(\hat{W}) $ 进行化简,使其形式与 $ Eh(\hat{W}) $ 一致。

51、开发一种基于软间隔支持向量机(SVM)的多类别分类方法,该方法要包含输入的非线性变换。

在由非线性变换生成的扩张特征空间中研究线性回归模型以执行机器学习任务,此技术也适用于软间隔 SVM 方法。

可通过非线性变换扩展软间隔 SVM 方法用于多类别分类,同时要考虑到:

  • 该技术虽能提升性能,但会增加计算复杂度,因为训练需在更高维度的特征空间中进行。
  • 可借助核技巧来处理此问题。

52、开发一种基于核函数的软间隔支持向量机方法用于二分类。

以下是调整为 Markdown 格式的文本内容:


可将在非线性变换生成的扩张特征空间中进行线性回归模型的技术应用于软间隔支持向量机方法,还可使用核技巧来解决该技术带来的计算复杂度增加的问题。核函数 $ K: \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R} $ 需是对称且正定的,即
$$ K(x, \tilde{x}) = K(\tilde{x}, x) $$

53、编写一个 MATLAB 函数来实现 K - 均值算法,有两处修改:a. 该 MATLAB 函数需提供两组中心,一组是最终聚类的均值,另一组是将上述中心投影到各自聚类中最近的数据点得到的;b. 不执行算法的第 5 步,而是在给定的迭代次数后终止算法。该 MATLAB 函数应采用如下形式:[Ctr,C,R,indx,cindx,E] = prob31_2(X,K,Ctr0,iter);其中输入参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值