(初学者) 求最大公约数和最小公倍数之辗转相除法

本文介绍了最大公约数和最小公倍数的概念,并重点讲解了辗转相除法(欧几里德算法)来求解最大公约数。通过将两整数相除取余数,不断迭代直到余数为0,最后的除数即为最大公约数。最大公倍数可通过两数乘积除以最大公约数得出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大公约数定义:如果数a能被数b整除,a就叫做b的 倍数,b就叫做a的 约数。约数和倍数都表示一个 整数与另一个整数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数。
最小公倍数定义:几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。

求最小公倍数要用到最大公约数。最小公倍数=两整数的乘积÷最大公约数。

第一种:辗转相除法。

辗转相除法, 又名 欧几里德算法(Euclidean algorithm)乃求两个 正整数之 最大公因子的算法。它是已知最古老的算法, 其可追溯至公元前300年前。

(1)辗转相除法
有两个整数,a,b。
先用a%b,得到余数c。
如果 c=0,则a=b;b为两个数的最大公约数。
如果c!=0,则a!=b;则令a=b,b=c;重复上面的步骤,直到b为0。


#include<stdio.h>  
int main()  
{   
   int m, n, a, b, t, c;  
   printf("Input two integer numbers:\n");  
   scanf("%d%d", &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值