台阶问题

题目描述
有 N 级的台阶,你一开始在底部,每次可以向上迈最多 K 级台阶(最少 1 级),问到达第 N 级台阶有多少种不同方式。
输入
多组输入,两个正整数N(N ≤ 1000),K(K ≤ 100)。
输出
一个正整数,为不同方式数,由于答案可能很大,你需要输出 ans mod 100003 后的结果。
样例输入
5 2
样例输出
8
N=1:根据显然定理,只有1种走法
N=2:可以每次走1步,走2次,也可以一次走2步,有2种走法
N=3:1,1,1;1,2;2,1;有3种走法
N=4:1,1,1,1;1,1,2;1,2,1;2,1,1;2,2;有5种走法
N=5:1,1,1,1,1;1,1,1,2;1,1,2,1;1,2,1,1;2,1,1,1;1,2,2;2,1,2;2,2,1;有8种走法 。
递推公式:
F(N)=1,N=0或1;F(N)=F(N-1)+F(N-2);
这道题目就是斐波那契数列的变形,以上是K等于2时的递推公式,我们很容易类比,归纳出当K的值不确定时候的递推公式:
F(N)=1,N=0;F(N)=F(N-1)+F(N-2)+······+F(N-K)。注意N-K不能小于0 。
这个是找的别人的解题方法:XDU__St博主名字。
这个还是找的规律。自己还是一点头绪都没有。这次比赛吧。自己分析问题的能力太弱了。

#include<stdio.h>
int a[1050];
int main()
{
    int n, k, i, j;
    while (~scanf ("%d%d", &n, &k))
    {
        for (i = 1; i <= 1000; i++) a[i] = 0;
        a[0] = 1;
        for (i = 1; i <= 1000; i++)
            for (j = 1; j <= k && j <= i; j++)
                a[i] = (a[i] + a[i-j]) % 100003;
        printf ("%d\n", a[n]);
    }
    return 0;
}
### 动态规划在台阶问题中的应用 动态规划是一种通过分解子问题来解决复杂问题的方法[^1]。台阶问题通常可以通过动态规划的思想进行求解,其核心在于将问题分解为更小的子问题,并通过递推关系找到最终解。 #### 问题描述 台阶问题通常可以描述为:给定一个有 `n` 级台阶的楼梯,每次可以选择 1 级或 2 级台阶,问有多少种不同的方式可以到第 `n` 级台阶。 #### 解题思路 为了计算到达第 `n` 级台阶的不同方式,可以定义一个数组 `dp`,其中 `dp[i]` 表示到达第 `i` 级台阶的不同方法数。根据题目条件,可以得出以下递推关系: - 如果从第 `i-1` 级台阶 1 步到达第 `i` 级台阶,则有 `dp[i-1]` 种方法。 - 如果从第 `i-2` 级台阶 2 步到达第 `i` 级台阶,则有 `dp[i-2]` 种方法。 因此,递推公式为: ```plaintext dp[i] = dp[i-1] + dp[i-2] ``` 边界条件为: - 当 `n=0` 或 `n=1` ,只有一种方法到达目标台阶,即 `dp[0] = 1` 和 `dp[1] = 1`。 #### 实现代码 以下是基于动态规划思想的 Python 实现代码: ```python def climb_stairs(n): if n == 0 or n == 1: return 1 dp = [0] * (n + 1) dp[0], dp[1] = 1, 1 for i in range(2, n + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[n] # 示例调用 n = 5 print(f"共有 {climb_stairs(n)} 种方法到达第 {n} 级台阶") ``` 上述代码中,`dp` 数组用于存储到达每一级台阶的方法数,最终返回 `dp[n]` 即为到达第 `n` 级台阶的所有可能方法数。 #### 优化空间复杂度 由于递推公式仅依赖于前两个状态,因此可以通过两个变量代替整个数组,从而将空间复杂度降低到 O(1)。 ```python def climb_stairs_optimized(n): if n == 0 or n == 1: return 1 prev1, prev2 = 1, 1 for i in range(2, n + 1): current = prev1 + prev2 prev2 = prev1 prev1 = current return prev1 # 示例调用 n = 5 print(f"共有 {climb_stairs_optimized(n)} 种方法到达第 {n} 级台阶") ``` #### 总结 通过动态规划的方法,台阶问题可以被高效地解决。这种方法不仅适用于简单的台阶问题,还可以扩展到更多复杂的场景,例如允许每次多步台阶或增加额外约束条件[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值