大数据面试题 —— 数据仓库

数据仓库是什么


数据仓库是一个面向主题的集成的相对稳定的反映历史变化的数据集合,主要用于存储历史数据,然后通过分析整理进而提供数据支持和辅助决策。

数据仓库和数据库的区别


数据库(OLTP),数据仓库(OLAP)。

(1)数据库中主要存放的是一些在线的数据,数据仓库中主要存放的是历史数据,并且存放的数据要比数据库多;

(2)数据库主要用于业务处理(比如交易系统),数据仓库主要用于数据分析;

(3)数据库的设计就是要避免冗余,而数据仓库通常会专门引入冗余,减少后面进行分析时大量的 join 操作。

在数据仓库中,冗余指的是相同的数据在多个表中重复存储。比如预聚合数据,为了提高查询性能,数据仓库可能会事先计算并存储聚合数据。

数据仓库和数据集市


数据仓库其实指的集团数据中心:主要是将公司中所有的数据全部都聚集在一起进行相关的处理操作 (ODS层)

数据的集市(小型数据仓库):在数据仓库基础之上, 基于主题对数据进行抽取处理分析工作, 形成最终分析的结果。

一个数据仓库下, 可以有多个数据集市。

数据仓库和数据集市的区别

  • 范围的区别
    • 数据仓库是针对企业整体分析数据的集合。
    • 数据集市是针对部门级别分析的数据集合。
  • 数据粒度不同
    • 数据仓库通常包括粒度较细的数据明细。
    • 数据集市则会在数据仓库的基础上进行数据聚合,这些聚合后的数据就会直接用于部门业务分析。

数据湖产品


数据湖与数据仓库的区别


为什么要对数据仓库分层


在这里插入图片描述

补充说一下:我觉得数据仓库就是一种以空间换取时间的架构!

数仓分层,以及每一层的作用


### 回答1: 大数据面试题——spark据倾斜调优(五) 在Spark中,据倾斜是一个常见的问题,它会导致任务执行时间过长,甚至导致任务失败。因此,我们需要对据倾斜进行调优。 以下是一些调优方法: 1. 均匀分布据 如果据倾斜是由于据分布不均匀导致的,可以尝使用随机据均匀分布到不同的分区中。可以使用repartition或coalesce方法来实现。 2. 使用聚合函 如果据倾斜是由于某些键的值过大导致的,可以尝使用聚合函,如reduceByKey或aggregateByKey,将键值对合并为一个值。这样可以减少据传输量,从而减少据倾斜。 3. 使用随机前缀 如果据倾斜是由于某些键的值过大导致的,可以尝使用随机前缀来将键值对分散到不同的分区中。可以使用map方法来实现。 4. 使用自定义分区器 如果据倾斜是由于默认的哈希分区器导致的,可以尝使用自定义分区器来将据均匀分布到不同的分区中。可以实现Partitioner接口来自定义分区器。 5. 使用广播变量 如果据倾斜是由于某些变量在多个任务中重复计算导致的,可以尝使用广播变量来共享变量。可以使用broadcast方法来实现。 6. 使用缓存 如果据倾斜是由于某些据在多个任务中重复使用导致的,可以尝使用缓存来避免重复计算。可以使用cache或persist方法来实现。 以上是一些常见的调优方法,但具体的调优方法需要根据具体的情况来选择。 ### 回答2: 在Spark任务中,据倾斜可能会导致某些任务的执行时间远远超过其他任务,从而导致整个Spark应用程序的执行时间延长。为了解决这个问题,可以采取以下优化措施: 1.据预处理:可以通过分析据的相关性以及倾斜据的分布情况来提前对据进行处理和转换,以便尽可能地把据分散到多个partition中。例如,可以采用哈希等方式,将据平均地分配到多个分区中去。 2.增加分区量:如果据存在明显的倾斜态势,那么可以通过增加partition的量来缓解据倾斜的影响。可以使用repartition或者coalesce算子来增加分区量。 3.采用随机算法:随机算法可以有效地减少据倾斜的影响。例如,在join操作中,可以采用随机抽样的方式来选择少表的关联键,以达到据均衡的目的。 4.使用自定义累加器:如果据倾斜只存在于某些关键据上,可以采用自定义累加器的方式减少据倾斜的影响。例如,在计算word count时,可以使用Accumulator来统计单词出现的次,以达到据均衡的目的。 5.使用Broadcast变量:如果据倾斜存在于join表中的话,可以使用Broadcast变量将较小的表广播到每个节点,以减少网络传输的消耗。 综上所述,解决Spark据倾斜问题需要综合考虑据处理方式、partition量、算法选择等方面,根据实际情况来设计和优化Spark应用程序,以达到优化性能、提升运行效率的目的。 ### 回答3: Spark据倾斜是一个常见的问题,它发生的原因可能是据分布不均匀或者据特征相似性较高等。如果不加以处理,据倾斜会导致运行时间变长,资源浪费,甚至导致任务失败等一系列问题。因此,调优是十分必要的。 一般情况下,Spark据倾斜调优的方法主要分为以下几种: 1. 手动调节shuffle分区的据倾斜时,可以通过调整shuffle的分区量来缓解压力。当据分布较为均匀时,增加分区量可以提高并行度,更好地利用资源,减少运行时间。但是原本据分布不均匀的情况下,增加分区量只能加重分区内的据倾斜问题。 2. 增加随机前缀或者后缀 随机前缀或者后缀是一种常用的解决Spark据倾斜的方法。它通过对相同Key的Value加上随机的前缀或者后缀,然后再进行处理,将原本的据压平,以达到均匀分布的效果。 3. 使用Spark SQL的聚合函 Spark SQL的聚合函可以更好地解决据倾斜的问题。如果遇到有大量重复Key的情况,可以使用Spark SQL中的ReduceByKey或者GroupByKey进行聚合,其实现过程中会自动解决据倾斜的问题。 4. 采用第三方工具 当据倾斜问题较严重时,可以采用第三方工具,如Spark的Tungsten、HyperLogLog等。这些工具可以对据进行均衡分布,优化任务,并提高运行效率。 总结起来,在Spark据倾斜调优中,我们可以通过手动调整shuffle分区量、增加随机前缀或后缀、使用Spark SQL聚合函、采用第三方工具等方法来解决问题。但是,具体方法要根据不同场景灵活运用,选择合适的解决方案。同时,对于Spark应用程序的开发和调,我们也应该加强对Spark内核的理解,减少据倾斜问题的出现,以提高应用程序的稳定性和运行效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值