目录
1.整形
2.浮点型
1.整形:
(1) char: 内存里面占 1字节 = 8比特; 那么可以表示2^8(256)个数据. 数据的范围是0~127 -128~-1
有符号的char: 第一位表示的是符号位, 那么数据的变化是如下图所示:
(2) 无符号的char的数据范围是0 - 255
(3) 那么可以总结出来一个公式: 有符号的数据类型的范围是[0~2^(n-1)-1][-2^(n-1)~-1]
无符号的范围是[0~2^n-1], 注意这里的n是比特位不是字节位.
例如: int: [0 ~ 2^15-1][-2^15 ~ -1] = [0 ~ 32,767] [-32,768 ~ -1];
无符号类型int [0 ~ 65,535];
1.2 练习:
因为输出是%d的形式, 所以输出是-10;
这里-128 是 1000 0000; 整形提升之后就是1111 1111 1111 1111 1111 1111 1000 0000; 早就超出范围了直接int最大范围4亿9千万.
int main()
{
char a = -128;
//char a = 128;
printf("%u", a);
return 0;
}
输出就是9, 8, 7, 6, 5, 4, 3, 2, 1, 4294967295, 4294967294....
int main()
{
unsigned int i;
// 0000 0000 0000 0000 0000 0000 0000 1001
// 0000 0000 0000 0000 0000 0000 0000 1000
// ...
// 1111 1111 1111 1111 1111 1111 1111 1111
// 1111 1111 1111 1111 1111 1111 1111 1110
//...
// 1000 0000 0000 0000 0000 0000 0000 0000
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
}
return 0;
}
2.浮点数的存储:
浮点数存储的规则:
S是符号位, E是指数位, M是有效数字.
其中规定M是 1< M < 2;
E是分情况的: (1)E是无符号整形, E为8位取值范围就是 0-255; 11位的话就是 0-2047;
在存放真实值的时候还要加127/1023;
获取真实值:
(2)E不全为0/ 不全为1: 将E-127/1023得到真实值, 然后还要加上M位的还原1.xxx.
(3)E全为0: 1-127/1023得到真实值; M位还原的0.xxx;
(4)E全为1: M如果为0,则是+/-无穷大.
单精度是32位; 双精度是64位;
举个栗子:
n打印出来的就是9, *pFloat是float类型, 那么就会采用浮点数的规则存储;
9的补码就是: 0000 0000 0000 0000 0000 0000 0000 1001
所以*pFloat解读出来就是0000 0000 0000 0000 0000 0000 0000 1001;
那么s=0; E全为0; 就是1-127=-126; M是0.0000 0000 0000 0000 1001;
最后2^-126*0.0000 0000 0000 0000 1001近似为0;
第三次打印的n; 9.0的浮点数表示为0 1000 0010 00100000000;
整数读取出来就是1 010 400;
最后*pFloat读取出来9.0;
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}