每天五分钟机器学习:拉格朗日对偶函数

本文重点

在数学优化领域,拉格朗日对偶函数作为连接原始约束问题与对偶问题的核心纽带,展现了将复杂约束优化转化为无约束优化的方式。

数学表达

原始问题建模

拉格朗日函数构造

此时的目标就是:

先假设w为常数,让拉格朗日函数对橙子变量λ求极大值,消掉λ之后,在对λ求极小值。

为什么这样求呢?这是因为这样求和原问题有相同的解。

实际目的是求最小化的①,那儿我们假设①的最小值是q,那么①我们看成是一个常数,那么现在L越大,证明①在整体中越小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值