大模型压缩技术主要是为了在保持模型性能的前提下,减少模型的参数量和计算复杂度,以适应更低的计算资源、更小的内存占用和更快的推理速度。以下是当前主流的模型压缩技术,包括但不限于

🌟 1. 剪枝(Pruning)

剪枝通过删除神经网络中冗余或不重要的权重(或神经元)来减少模型规模。

🔹 常见方法:

  • 非结构化剪枝:直接去除权重值接近于零的单个参数。
  • 结构化剪枝:删除整个卷积核、神经元或注意力头,以减少模型复杂度。
  • 动态剪枝:根据输入动态调整剪枝策略,保持灵活性。

👉 示例:

  • 剪掉Transformer中不重要的注意力头
  • 剪掉CNN中对特征提取贡献小的通道

🚀 2. 量化(Quantization)

量化是指将模型的参数(如权重)和激活值从高精度(如FP32)转换为低精度(如INT8、INT4、二值)表示,从而减少模型体积和计算量。。

🔹 常见方法:

  • 静态量化(Static Quantization):在推理前对模型进行量化。
  • 动态量化(Dynamic Quantization):在推理过程中实时量化激活值。
  • 对称量化(Symmetric Quantization):用对称区间进行量化。
  • 非对称量化(Asymmetric Quantization):用非对称区间进行量化。

🔹 典型方法:

      ✅ INT8量化(8-bit)
      ✅ INT4量化(4-bit)
     ✅ FP16量化(半精度浮点数)
     ✅ 混合精度量化(Mi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值