5分钟零成本实现本地AI知识库搭建

你一定经历过各种通用大模型一本正经胡说八道的时候吧,AI一通丝滑输出让人真假难辨,防不胜防。这种情况被称为AI幻觉。

大模型产生幻觉不幸“翻车”的原因很大程度上是“先天不足”,例如训练时来自特定领域的训练数据就比较缺失或存在偏差等。对于企业,AI的幻觉已经成为阻碍其落地应用的严重缺陷。

我们自然想让一些企业内部私有数据也进入到大模型推理分析的过程,让其更好服务于日常业务,但出于信息安全等考量,私有数据显然不可随意上传到第三方平台。针对这种情况,将企业内部知识库和大模型连接起来构建一个本地私有化的专属的AI知识库不失为一种简易的解决方案。

构建本地私有知识库的基本步骤

  1. 整理出需要模型分析的私有数据,比如文本数据(doc、csv、ppt…),音视频数据,甚至一些网址链接。
  2. 通过一个嵌入模型将这些信息转换成模型能够看得懂的向量信息,即信息的向量化。
  3. 将向量化的信息存储到专属的向量数据库中,构建本地知识库。

这个时候当用户提问时,我们引入的通用大模型将会结合本地知识库中所存在的信息有针对性的回答,甚至也可以专门分析本地知识库中的信息来输出。

本地AI知识库的安装和配置

AnythingLLM 是一款构建本地知识库的工具,能够直接读取文档并处理大量信息资源,包括文档上传、自动抓取在线文档,然后进行文本的自动分割、向量化处理,以及实现本地检索增强生成(RAG)等功能。

AnythingLLM支持几乎所有的主流大模型和多种文档类型,可定制化程度高,安装设置简单,适用于MacOS、Linux和Windows平台,也可以使用Docker安装。AnythingLLM默认通过Ollama来使用LLama2 7B、Mistral 7B、Gemma 2B等模型,也可以调用OpenAI、Gemini、Mistral等大模型的API服务。除AnythingLLM以外,近期较为热门的知识库工具还有MaxKB、RAGFlow、FastGPT、Dify 、Open WebUI 等。

01、下载并安装Ollama(用于下载各类通用大模型)

访问 https://ollama.com/download 选择所需版本

02、安装大模型和嵌入模型

我们示例中选择的是通义千问大模型和M3e嵌入模型,大家也可以根据自己的需要选择其他模型下载。Ollama支持的模型列表及资源占用情况可从官网查阅:https://ollama.com/library

03、下载并安装AnythingLLM

访问 https://anythingllm.com/download 选择对应版本

04、配置AnythingLLM

配置参数选择Ollama

Embedder选择M3e

向量数据库选择LanceDB(默认)

上传私有数据并验证AI问答效果

至此,一个AI驱动的本地私有知识库的基本架构已经搭建完成。接下来我们需要创建工作区,上传各种文档格式的企业私有数据,验证是否能正常工作。

01、csv表格

随意生成一份原始数据如下:

对话结果(对数据进行排序和筛选):

02、docx文档

原始数据是星融元AsterNOS网络操作系统的文档,其中涉及到高可靠特性的部分如下。

对话结果:

03、网址

超低时延交换机产品特性的片段如下。

对话结果:

可以看到,这个本地AI知识库已经在利用我们上传的私有文本数据回答问题了,下一步您需要持续不断地丰富私有内容,让其更加智能、可靠;大型企业则更需要对其“悉心调教”,例如充分考虑本地AI推理系统的并发接入性能,在网络基础设施上进行相应调整和升级,也要关注和其他内部工具的集成。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值