
cs231n
文章平均质量分 64
cs231n课程学习记录
huang_victor
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
cs231n_目标检测
分类、语义分割、目标检测、 实例分割。原创 2023-04-18 15:23:04 · 373 阅读 · 0 评论 -
cs231n_attention and transformer
attend图像的feature map,然后得到相似性矩阵、相似性权重、attend后得到的context matrix。1. 每次一个新的相关性vector计算,不是使用同一个,不存在bottleneck的问题。1. 长度不能太长,context vector 无法保存太多的信息;作用于一个set,无关顺序。self attention,可以处理很长的顺序、可以并行处理,但是比较费资源。2. 一个一个生成,无法一下子生成,效率不够高;2. 每次的相关性矩阵,可以attend到不同的位置。原创 2023-04-17 22:49:08 · 268 阅读 · 0 评论 -
CS231n 学习笔记_图像分类任务入门
图像分类任务的入门,难点,K近邻作为一个样例原创 2023-03-10 14:20:22 · 83 阅读 · 0 评论 -
CS231n_线性分类器
线性分类器的weight,resize之后也可以变成template或者filter的式样。常用的正则方法:L1,L2, Dropout, BatchNormalization等。目标概率分布已知,求解当前概率分布和目标概率分布的相关性,并进行优化。加入正则,控制不同的weight,但是loss相同。训练的过程就是优化损失函数,以获得更好的模型。图像,没有保持原始的尺寸,被压缩成向量。正确类别的得分要比其他的都要高。2. 向量空间的样本划分。1. 用于防止过拟合。2. 加入规则的方法。原创 2023-03-10 15:43:11 · 94 阅读 · 0 评论 -
CS231n_损失函数的优化
每个weight,新增很小的值,求解结果,然后求解相对精度。weight增加,计算量太大,而且不精确。梯度下降,是在小的batch上进行的,没法计算所有的数据,然后进行一次完整的反向传播。记录历史momentum,当前梯度求平均,用来抑制各个方向不均匀。Momentum记录过去的梯度,抑制随机噪音,超越局部最优点。3. 随机性,minibatch无法代表整体。求解梯度,沿着下降最快的方向更新参数。随机搜索,求取一定次数内的最小值。1. 不同方向梯度差的较多。4. batch大小。原创 2023-03-10 17:59:32 · 146 阅读 · 0 评论 -
cs231n_反向传播
反向传播,需要计算loss的梯度,然后对weights进行更新,以便优化loss。2. loss更新,重新来一遍,无法模块化。通过计算图,进行模块化,简单化的计算。下游梯度 = 局部梯度 x 上游梯度。1. 参数太多,很复杂。3. 模型太大,更复杂。原创 2023-03-14 14:06:06 · 94 阅读 · 0 评论 -
cs231n_全连接神经网络
可以通过一些传统的方法,提取图像的特征,然后在新的特征空间下,进行分类的任务。1. color histogram,不考虑spatial信息2. hog,histogram of orient gradient,考虑spatial设计特征提取器,并提取特征特征压缩处理线性的SVM机器学习问题:特征提取,比较复杂,需要经验。只有后续的线性分类器可以训练,没有充分利用数据。原创 2023-04-13 15:11:16 · 141 阅读 · 0 评论 -
cs231n_卷积神经网络
线性神经网络,在处理图像的时候,会把图像展开成1d的vector,这个就破坏了图像本身的spatial的结构,因此conv的神经网络针对这个而设计。卷积层的表现形式,和传统cv里的filter很像,特定的filter,提取特定的特征。原创 2023-04-14 23:31:27 · 222 阅读 · 0 评论 -
cs231n_经典网络结构
AlexNetVGGGoogleNetMobileNet下采样方法:上采样方法:增加感受野的方法:3. dilation提高网络速度的方法:原创 2023-03-13 16:10:01 · 82 阅读 · 0 评论 -
cs231n_深度学习软硬件
可以自定义函数,并自定义梯度的计算,这样pytorch在使用这个函数的时候,整个函数就变成一个单独的节点,而不是拆散变为基本的计算单元。torch.nn,定义网络结构,定义loss,定义optimizer,high level的api,大部分常用的网络结构都可以这么操作。训练迭代:前向传播,计算loss,loss梯度计算,调用optimizer,更新weights,循环。,可以模块化设计的网络结构,可以保存weight和状态。,可以建立计算图,并自动的计算梯度,可以用于反向传播。原创 2023-03-13 17:27:56 · 181 阅读 · 0 评论 -
cs231n_训练网络
xavier,初始化, Variance(input) = Variance(output),对tanh可以,对relu不合适。很小的随机数,对一般深度的网络是ok的,但是太深的网络不行,深度增加,activation逐渐变-,梯度变0;kaiming,初始化,如果使用resnet,第一个层用kaiming初始化,后续的都设为0.不是以0为中心,如果输入都是正的, 所有weight的梯度是同一个方向,优化只能zigzag。容易过饱和,梯度传递困难,梯度消失,优化困难。转化为,-1-1,以0为中心。原创 2023-03-14 14:28:00 · 221 阅读 · 0 评论