
机器学习
文章平均质量分 61
DawsonHwang
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
陈天奇slide学习笔记
阅读陈天奇博士的树融合slide的一些笔记原创 2017-04-24 10:52:12 · 6024 阅读 · 0 评论 -
为什么牛顿法比梯度下降法法更快收敛
为什么通常牛顿法比梯度下降法能更快的收敛分类: 机器学习与数据挖掘2013-09-22 10:56 126人阅读 评论(1) 收藏 举报优化问题:为什么通常牛顿法比梯度下降法能更快的收敛? 解答:牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不转载 2017-07-05 23:27:45 · 2161 阅读 · 0 评论