题解 | #nginx日志分析5-统计爬虫抓取404的次数#

这篇博客主要介绍了如何通过shell脚本分析Nginx日志,统计出所有爬虫抓取404错误的次数。博主分享了一个具体的bash脚本例子,用于筛选出包含特定爬虫标识的日志行,并进一步过滤出404状态码的请求,最后使用`wc -l`统计行数,得出爬虫抓取404页面的次数。博客内容涉及面试经验、公司招聘动态、求职建议以及程序员的日常,但核心是日志分析技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

字节跳动 算法提前批 一二三面

外卖骑手一面面经

腾讯前端一面(已挂)

十个后端,九个java

联想秋招启动,965工作,27天带薪年假病假

已投

支持一下

23届民办二本前端秋招上岸过程

怎么保证接口的幂等性呢?

京东2023年 TET-管培生-技术方向-面经

Redis 大 key 要如何处理?

985本半科班选手校招上岸

快手秋招数分是完全不收人了吗

快手秋招数分是完全不收人了吗

吉利新能源研究院一面

美的用户运营面经

联想秋招启动,965工作,27天带薪年假病假

华子实习寄啦 求佬们给鼠鼠指条明路吧

感谢美团今晚笔试放水🙏

各地硬件企业一览

众安转正失败...秋招还来得及吗?

python 学习笔记1

知识点list 集合 []集合的添加 append() ,且没有返回值自动排序方法 list1.sort()set 集合 {} 集合的添加 ad

 

汇川一面

汇川一面结束,大家都是什么时候收到二面消息的?

 

题解 | #最长回文子串#

class Solution { public: /** * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可

 

题解 | #字符串最后一个单词的长度#

a = input()b = a.split(' ')[-1]print(len(b))

 

笨办法,没用动态规划概念

#先定义判断回文子串的长度函数def len_huiwen(n, l, r): while l >= 0 and r < len(n) and

 

题解 | #明明的随机数#

方法一去重、排序?这不是直接可以用集合中的TreeSet不就行了就是直接把输入的值放入TreeSet再输出就行,代码略。方法二被去重的值在1-500之间,个数在

 

题解 | #找位置#

import java.util.LinkedHashMap;import java.util.List;import java.util.Map;import

 

0902饿了么笔试AK代码

Q1package ali.eleme;import java.util.Arrays;import java.util.Scanner;public clas

 

为什么校招生尽量避开客户端?细数客户端一百宗罪(九)

有后选后,无后选前,无后无前,算法也甜,条件允许,无脑后端,前途无量,预定高管,其次前端,需求频繁,温饱有余,人上人难,算法数据,收入可观,最好硕博,高端饭碗,

 

题解 | #nginx日志分析5-统计爬虫抓取404的次数#

#!/bin/bashcat nowcoder.txt|grep baidu| grep 404| wc -l

 

美团九月二号笔试

import java.util.*;// 注意类名必须为 Main, 不要有任何 package xxx 信息class Main { public s

 

题解 | #输出二叉树的右视图#

import java.util.*;public class Solution { /** * 代码中的类名、方法名、参数名已经指定,请勿修改,

 

题解 | #Nginx日志分析6-统计每分钟的请求数#

#!/bin/bashcat nowcoder.txt |awk -F':' '{print $2":"$3}' |sort |uniq -

&nbs

``` #include <bits/stdc++.h> #define MAXN 300005 using namespace std; typedef long long ll; int N, M; int L[MAXN], R[MAXN]; int RES[MAXN]; vector<int> vec[MAXN]; int main(){ cin>>N>>M; for(int i=1;i<=M;i++){ cin>>L[i]>>R[i]; vec[L[i]].push_back(R[i]); } priority_queue<int, vector<int> , greater<int>> q; for(int i=1;i<=N;++i){ for(int r:vec[i]) q.push(r); RES[i] = RES[i-1]; while(q.size() && q.top() < i) q.pop(); if(q.size()) q.pop(), ++RES[i]; cout<<RES[i]<<&#39;\n&#39;; } return 0; }```# B4160 [BCSP-X 2024 12 月小学高年级组] 排座位 ## 题目描述 有 $n$ 个座位,从左到右编号为 $1 \sim n$。现在有 $m$ 个小朋友,第 $i$ 个小朋友可以坐在 $l[i] \sim r[i]$ 这些座位上,每个座位至多坐一个人。 现在请问,如果只保留 $1 \sim k$ 这些座位,最多可以给多少小朋友安排座位。请你输出 $k = 1 \sim n$ 的所有答案。 例如 $n = 3, m = 3$,$3$ 个小朋友 $A, B, C$ 的区间为 $[2, 2], [2, 3], [1, 3]$: - $k = 1$ 时:一个可行方案为 $[C]$,答案为 $1$; - $k = 2$ 时:一个可行方案为 $[C, B]$,答案为 $2$; - $k = 3$ 时:一个可行方案为 $[C, A, B]$,答案为 $3$; ## 输入格式 第一行 $2$ 个整数 $n, m$ 代表座位和小朋友的数量。 接下来 $m$ 行,每行 $2$ 个整数 $l[i], r[i]$ 代表第 $i$ 个小朋友的意愿区间。 ## 输出格式 输出 $n$ 行,第 $k$ 行代表只保留前 $1 \sim k$ 个座位之后最多可以给几个小朋友安排座位。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 3 2 2 2 3 1 3 ``` ### 输出 #1 ``` 1 2 3 ``` ## 输入输出样例 #2 ### 输入 #2 ``` 8 9 5 7 6 7 5 6 6 7 7 7 5 7 4 6 1 1 7 7 ``` ### 输出 #2 ``` 1 1 1 2 3 4 5 5 ``` ## 说明/提示 ### 样例 3-7 见附件。 ### 数据范围 对于所有数据,$1 \leq n, m \leq 2 \times 10^5, 1 \leq l[i] \leq r[i] \leq n$。 本题采用捆绑测试,你必须通过子任务中的所有数据点以及其依赖的子任务,才能获得子任务对应的分数。 | 子任务编号 | 分值 | 数据范围 | 特殊性质 | 子任务依赖 | |:------------:|:------:|:----------:|:----------:|:------------:| | 1 | 26 | $n, m \leq 10$ | | | | 2 | 28 | $n, m \leq 100$ | | 1 | | 3 | 11 | $n, m \leq 5000$ | $l[i] = r[i]$ | | | 4 | 26 | $n, m \leq 5000$ | | 1,2,3 | | 5 | 9 | $n, m \leq 2 \times 10^5$ | | 1,2,3,4 | 帮我写一份题解
03-25
<think>嗯,我现在要解决这个题目,题目是说有n个座位,m个小朋友,每个小朋友有一个区间[l[i], r[i]],他们只能坐在这个区间里的某个座位。每个座位最多坐一个人。然后,对于每个k(从1到n),我们要计算当只保留前k个座位时,最多能安排多少小朋友。然后输出每个k对应的答案。 首先,我得理解题目要求。题目需要的是对于每个k,求最大的安排数目。这看起来像是一个动态的问题,因为当k增加时,可用的座位变多,可能能安排更多的小朋友。那怎么高效地处理每个k的情况呢? 首先,我想,对于每个k,我们需要在1到k的座位中找到尽可能多的小朋友区间,并且这些区间的座位不能重叠。或者说,每个小朋友必须被分配到一个唯一的座位,该座位在他们的区间内,并且不超过k。这类似于区间调度的问题,但这里的座位是线性的,每个座位只能被选一次。 那这个问题的模型应该类似于活动选择问题中的最大匹配,或者可能是一个贪心问题。例如,经典的区间调度问题中,选择最多的不重叠区间,这里可能类似,但每个区间必须选一个点,并且所有选的点不能重复,且点必须属于各自的区间。 那么,对于每个k,如何计算这样的最大数目? 直接的想法是,当处理到k时,我们需要从所有满足l[i] ≤ seat ≤ min(r[i],k) 的区间中选择尽可能多的座位。这看起来像是区间点覆盖的问题,其中每个点只能被覆盖一次,且我们想要覆盖最多的区间。这个时候,经典的贪心策略是按右端点排序,然后依次选择尽可能早的右端点,这样能留下更多的空间给后面的区间。 比如,当k逐渐增大时,我们可以维护一个优先队列(最小堆),保存当前所有可以选择的区间的右端点。对于当前处理的k,我们可能需要将左端点等于k的区间加入堆中,堆中的元素是这些区间的右端点。然后,每次取右端点最小的,如果这个右端点小于k,那么显然这个区间已经无法在当前k的位置被选中,所以需要弹出。剩下的堆中的元素都是右端点>=当前k的,这时候选择最小的右端点,这样后面的k可能有更多的选择空间。然后,这个座位被占用,所以计数加一。 这让我想到,可能有一个动态的贪心策略,随着k的递增,逐步处理每个座位,并维护当前可以选择的候选区间,然后选择右端点最小的来占据当前的座位。 比如,代码的大致思路可能是这样的: 1. 预处理所有区间,将它们按照左端点分组。即,对于每个左端点l,存储所有以l为左端点的区间的右端点。 2. 然后,从k=1到n遍历每个座位。对于每个k,首先将左端点等于k的所有区间的右端点加入到一个优先队列(最小堆)中,因为这些区间现在可以开始被考虑。 3. 然后,检查堆中的元素,如果堆顶的右端点小于k,说明这些区间已经无法被选中(因为它们的右端点比当前k小),所以需要弹出。 4. 此时,堆中的元素都是右端点>=k的。如果堆不为空,那么可以选中其中一个(右端点最小的),这样占据当前的k座位。然后,将这个元素弹出,并将结果计入到当前k的答案中。 5. 最后,答案数组可能需要累加,或者根据前面的结果递推。 但原题中的代码是这样的: 在遍历每个i(也就是当前的k)时: - 将左端等于i的区间的右端点加入优先队列(最小堆)。 - RES[i] = RES[i-1] - 然后弹出堆中所有右端点小于i的元素- 如果堆不为空,弹出堆顶,RES[i] +=1. 然后输出RES[i]。 那这个过程其实是,对于每个座位i,先收集所有左端点等于i的区间的右端点,加入堆。然后,移除那些右端点已经小于i的(这些区间无法在i或之后的位置被选中)。此时,如果堆中有元素,说明可以选中其中一个右端点最小的,占据当前i的位置,所以RES[i] = RES[i-1] +1。否则,RES[i] = RES[i-1]。 比如,对于样例中的情况: 当k=1时: i=1,vec[1]中的右端点是3(第三个小朋友的区间是[1,3])。将3加入堆。然后检查堆顶是否>=1,是的。弹出,RES[1]=RES[0]+1=1. 当k=2时: i=2,vec[2]中的右端是2(第一个小朋友)和3(第二个小朋友),将它们加入堆。然后检查堆中的元素。此时堆中有2和3。此时,弹出堆顶是2,是否>=2?是的。弹出,RES[2] = RES[1] +1=2. 这样,此时堆中剩下3。 当k=3时: i=3,vec[3]可能没有元素。然后检查堆中的元素。堆顶是3,等于3,所以弹出,RES[3] = RES[2]+1=3. 所以输出是1,2,3,符合样例。 这样,这个算法的思路是,对于每个座位i,尽可能选择右端点最小的区间来占据该座位,这样后面的座位可以有更大的选择空间。这类似于贪心算法中的经典策略。 那这样,对于每个k来说,RES[k]的值就是前k个座位最多能安排的小朋友数目。那这里的递推关系式是,RES[k] = RES[k-1] + 是否能在当前座位安排一个小朋友。而是否能安排的条件是,存在一个区间的右端点>=k,并且左端点<=k,且未被之前的安排所占用。 但这里的算法似乎巧妙地将所有可能的区间按左端点分类,并在处理到i时,将左端点为i的区间加入堆中。堆中保存的是这些区间的右端点。每次处理i的时候,先弹出那些右端点小于i的(因为这些区间无法在i之后的位置被选中,因为它们的右端点比i小,所以不可能被选中)。然后,如果有剩余的右端点,说明当前i可以被选中,所以将堆顶的右端点弹出(即选中该区间,占据i的位置),并将RES[i]增1。 这样,对于每个i,RES[i]的值等于前i个座位中最多能安排的数量。这似乎是对的,因为每次处理i时,尽可能选择一个右端点最小的区间来占据i,这样剩下的较大的右端点可能可以被后面的座位使用。 比如,假设现在有两个区间,一个是[2,3],另一个是[2,4]。当处理i=2时,这两个区间的右端点3和4被加入堆。此时,堆顶是3。选中它,占据i=2。此时,剩下的区间是4,那么在i=3时,可能还能选这个区间的右端点4,占据i=3的位置。或者,比如当i=3时,可能还有其他的区间的右端点。 这样的策略确实能最大化安排数目,因为每次选择最小的右端点,可以保留较大的右端点给后面的座位,从而尽可能多的安排更多的区间。 所以这个算法的时间复杂度是O(m log m + n log m),因为每个区间的右端点被加入堆一次,每个元素被弹出一次。而堆的操作是log级别的。对于n和m都是2e5的情况来说,这样的复杂度是可以接受的。 那么,题解的思路就是这样的。现在需要将这个思路用中文清晰地表达出来,结构清晰,逐步解释。 那题解的步骤大致可以分解为: 1. 问题分析:题目要求每个k对应的前k座位最大安排数目,转化为贪心选择问题。 2. 算法思路:按座位从左到右处理,利用优先队列维护可用的右端点,每次选择最小的右端点,确保尽可能多的后续安排。 3. 代码解析:解释代码的结构,各个变量的作用,以及每个步骤的意义。 4. 复杂度分析:说明时间复杂度的合理性,证明算法可以通过。 此外,需要注意题解的输入输出样例的解释,以帮助读者理解算法如何应用。 可能的疑问点: - 为什么选择右端点最小的?这如何确保全局最优? 答:因为右端点越小的区间,越早结束,越可能被选中,从而释放后面的座位给其他区间。这是典型的贪心策略,例如在经典的无重叠区间问题中,选择结束时间最早的。 - 为什么按照左端点分组,并在处理i时加入所有左端点为i的区间? 答:因为当处理到座位i时,所有左端点<=i的区间都可能被考虑,但为了按顺序处理,我们需要在i的位置处理所有左端点为i的区间,将它们加入堆中。这样,在处理座位i的时候,这些区间才开始被考虑,因为他们的左端点恰好是i,所以它们的最早可用座位是i。如果左端点比i小,那么可能在之前的处理中被提前加入堆中? 或者,原代码中,vec[i]存储的是左端点为i的区间的右端点。例如,对于左端点为l的区间,当处理i=l时,才会将这些右端点加入堆。这样,是否正确? 比如,假设一个区间的左端点是1,右端点是5。当处理i=1时,将其右端点5加入堆。这时候,当i=1时,堆中有5。此时,堆顶5>=i=1,弹出,安排到i=1,RES[1] =1。此时,这个区间的右端点被用掉,剩下的座位无法再使用这个区间。 但是如果该区间的左端点是1,右端点是5,当i=3的时候,如果之前的处理中没有选中它,那如何处理? 比如,假设另一个区间的右端点更小,比如在i=1的时候,有一个区间[1,1],那么当i=1时,该区间会被处理,选中i=1。而那个[1,5]的区间的右端点5被加入堆,但因为堆顶是1,所以可能无法被选中? 此时,当i=1时,堆中有5和1?或者,vec[1]包含所有左端点为1的区间的右端点? 假设代码中的vec数组存储的是左端点为i的区间的右端点。那么,当i=1时,所有左端点为1的区间的右端点都被加入堆中。例如,如果有两个区间,[1,1]和[1,5],在i=1时,它们的右端点1和5都被加入堆。此时,堆顶是1。选中这个右端点,弹出,占据i=1。剩下的堆中的5,在i=2时,可能会被处理吗? 是的,当处理i=2时,代码会检查堆中的元素,弹出那些右端点小于i=2的元素。此时堆中的5>=2,所以不被弹出。这时候,堆不为空,所以选中右端点5,占据i=2的位置?那这样,是否正确? 显然,这样处理是错误的,因为该区间的右端点是5,可以被安排到i=2的位置吗? 该区间的左端点是1,右端点是5,所以可以选i=2的座位。是的。所以在i=2时,该区间的右端点是5>=2,所以可以被选中。此时,弹出堆顶的5,并安排到i=2的位置。此时,该区间被选中,占据i=2的座位。剩下的堆中没有元素。这样,当i=3的时候,可能还有其他区间的右端点是否被处理? 这说明,原算法的处理方式可能存在问题? 或者,可能我的理解有误? 比如,原算法中的vec[i]是按左端点i来分组的。当处理到i的时候,才将左端点为i的区间的右端点加入堆。例如,对于左端点为1的区间,其右端点只能在i=1的时候被加入堆。那如果该区间的左端点是1,右端点是5,那么在i=1时,该区间的右端点5被加入堆。此时,当i=1时,处理该堆,可能会被选中吗? 是的。例如,在i=1时,处理该区间的右端点5: 在i=1时,将左端点为1的所有区间的右端点(比如5)加入堆。然后,RES[1] = RES[0](初始为0)+是否有选中。此时,堆中的元素5。检查堆顶是否>=i=1,是的。所以弹出堆顶5,RES[1]变为1。这时候,该区间被选中,占据i=1的位置。而该区间的右端点是5,但实际上被安排到了i=1的位置。这是否正确? 是的,因为该区间的可选范围是1到5,所以安排到i=1是合法的。但此时,其他可能的区间的右端点可能更大,而选择较小的右端点可能更优? 比如,假设有一个区间[1,5],另一个是[1,3]。当i=1时,两个右端点3和5被加入堆。此时,堆顶是3。弹出,安排到i=1,此时,另一个区间的右端点5还在堆中吗?或者,这两个都被加入堆中? 哦,是的,因为两个区间的左端点都是1,所以在i=1时,两个都被加入堆。然后,在i=1的处理中,堆顶是3,弹出,占据i=1的位置,然后堆中的5会被保留。当i=2时,处理时,会检查堆顶5是否>=2,是的,所以弹出5,占据i=2的位置。这样,两个区间都被安排了。但这是否合法? 不,因为每个座位只能坐一个小朋友。所以,此时两个区间被安排到i=1和i=2的位置。但这是正确的,因为每个小朋友的区间包含这些位置。 这说明原算法的处理方式是正确的。该算法在每一步尽可能选择右端点最小的区间,这样可以确保后面的座位可以被更多的区间覆盖。 因此,原算法的正确性可以保证。 那么,回到问题,题解的写法应该基于这样的思路:按座位顺序处理,每个座位处理时,加入所有左端点为当前座位的区间的右端点,然后弹出无法使用的区间,选择最小的右端点,占据当前座位,并累加答案。 所以,现在我需要将这个过程用中文详细地解释清楚,步骤清晰,结构合理。 可能的题解结构: 题目大意:简述题目要求,每个k求前k座位最大安排数。 算法思路: - 将每个区间按照左端点分组,每个左端点对应的右端点列表。 - 使用优先队列(最小堆)来维护当前可用的右端点。 - 遍历每个座位i(从1到n): - 将所有左端点为i的区间的右端点加入堆。 - 弹出堆中所有右端点小于i的(这些区间无法被选中)。 - 如果堆非空,说明当前i可以安排一个小朋友,弹出堆顶,答案加一。 - 当前i的答案等于前i-1的答案加上是否安排成功。 时间复杂度:O(m log m + n log m),满足题目要求。 代码解析:解释关键变量和代码流程。 正确性证明:为什么贪心策略是正确的,即每次选择右端点最小的区间可以得到全局最优。 例如,假设存在一个更优的选择方式,不选择当前最小的右端点,而选择一个较大的,这样会导致后面可能无法安排更多的区间。而选择较小的右端点可以腾出后面的座位给更多的区间。 这样,通过贪心策略的正确性,可以确保每次选择最优的。 最后,附上代码或者说明原代码的正确性。 现在,我需要根据这些思路,写出一个符合要求的题解。</think>### 题目大意 给定 $n$ 个座位和 $m$ 个小朋友的座位区间 $[l_i, r_i]$,要求对每个 $k$($1 \leq k \leq n$),求出仅保留前 $k$ 个座位时,最多能为多少小朋友安排座位。 --- ### 算法思路 **贪心策略** 对于每个座位 $i$,尽可能选择右端点最小的区间来占据该座位。这样可以为后续的座位保留更大的选择空间。 **具体步骤** 1. **预处理分组** 将每个区间按左端点 $l_i$ 分组,存储所有左端点为 $l_i$ 的右端点 $r_i$。 2. **优先队列维护可用区间** 使用最小堆(优先队列)动态维护当前可选的右端点。遍历每个座位 $i$ 时: - 将左端点为 $i$ 的区间的右端点加入堆。 - 弹出堆中所有右端点小于 $i$ 的区间(这些区间已无法使用)。 - 若堆非空,选择堆顶(最小右端点)占据当前座位 $i$,答案累加。 3. **递推记录结果** 用数组 `RES` 保存每个 $k$ 的答案,其中 `RES[i]` 表示前 $i$ 个座位的最大安排数。递推关系为: $$RES[i] = RES[i-1] + \text{是否在座位i安排了一个小朋友}$$ --- ### 代码解析 ```cpp #include <bits/stdc++.h> #define MAXN 300005 using namespace std; typedef long long ll; int N, M; int L[MAXN], R[MAXN]; int RES[MAXN]; // 记录答案 vector<int> vec[MAXN]; // 按左端点分组的右端点集合 int main(){ cin >> N >> M; for(int i=1; i<=M; i++){ cin >> L[i] >> R[i]; vec[L[i]].push_back(R[i]); // 按左端点分组 } priority_queue<int, vector<int>, greater<int>> q; // 最小堆 for(int i=1; i<=N; ++i){ // 加入左端点为i的区间的右端点 for(int r : vec[i]) q.push(r); RES[i] = RES[i-1]; // 初始化为前i-1个座位的结果 // 移除无法使用的区间(右端点 < i) while(!q.empty() && q.top() < i) q.pop(); // 如果堆非空,选中最小右端点占据当前座位i if(!q.empty()){ q.pop(); RES[i]++; } cout << RES[i] << &#39;\n&#39;; } return 0; } ``` **关键点解释** - `vec` 数组按左端点分组,快速获取可用的右端点。 - 优先队列自动按右端点从小到大排序,确保每次选择最小的。 - 动态维护堆中的有效区间,保证时间复杂度为 $O(m \log m + n \log m)$。 --- ### 正确性证明 贪心策略的正确性基于以下观察: 1. **右端点越小的区间越紧迫** 若当前不选择右端点较小的区间,可能导致后续无法充分利用座位。 2. **全局最优性** 每次选择最小右端点的区间,可以最大化后续座位的可用区间数。例如,若选择较大的右端点,可能使得后续座位无法覆盖更多区间。 --- ### 复杂度分析 - **时间** 每个区间的右端点最多被加入和弹出堆一次,堆操作复杂度为 $O(\log m)$,总时间复杂度为 $O(m \log m + n \log m)$,适用于 $n, m \leq 2 \times 10^5$。 - **空间** 使用数组和优先队列存储数据,空间复杂度为 $O(n + m)$。 --- ### 总结 本题通过贪心策略动态维护可用区间,结合优先队列高效选择最优解,确保了算法的时间复杂度。核心思路是“按座位顺序处理,每次选择右端点最小的区间”,从而最大化总安排数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值