python ProcessPoolExecutor 和ThreadPoolExecutor使用

该博客介绍了如何利用Python的`concurrent.futures`模块中的`ThreadPoolExecutor`和`ProcessPoolExecutor`来执行异步任务。通过`submit()`函数提交任务并使用`as_completed()`等待所有任务完成,展示了并发执行func1和func2函数的过程,从而提高程序执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from concurrent.futures import ProcessPoolExecutor, as_completed, ThreadPoolExecutor


def func1(a, b):
    print(f"func1  start...")
    return {"k": a + b}


def func2(c):
    print(f"func2  start...")
    return {"k1": c}


def run():
    d = {}
    res = []
    with ThreadPoolExecutor(max_workers=4) as p:
    # with ProcessPoolExecutor(max_workers=4) as p:
        res.append(p.submit(func1, 2, 3))  # 异步执行
        res.append(p.submit(func2, 55))
        for r in as_completed(res):  # 等待所有函数执行完成
            if r.done() and r.result():
                d.update(r.result())
    print(d)


if __name__ == '__main__':
    run()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值