1. 如图1,在平面直角坐标系中,一次函数y = x + b的图象经过点A(-2,0),与反比例函数y=k\x的图象交于B(a,4),C两点。
- (1)求一次函数和反比例函数的表达式;
- (2)点M是反比例函数图象在第一象限上的点,且SMAB=4,请求出点M的坐标;
- (3)反比例函数具有对称性,适当平移就可发现许多神奇的现象。将该双曲线在第一象限的一支沿射线BC方向平移,使其经过点C,再将双曲线在第三象限的一支沿射线CB方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,如图2,此时平移后的两条曲线围成了一只美丽的“眸”,PQ为这只“眸”的“眸径”,请求出“眸径”PQ的长
详解:
(1)
- 把A(-2,0)代入y = x + b,利用待定系数法,将x=-2,y = 0代入,可得0=-2 + b,算出b = 2,确定一次函数为y = x + 2
- 把B(a,4)代入y = x + 2,即4=a + 2,解得a = 2,得到B(2,4) 。再将B(2,4)代入反比例函数y=k/x,4=k/2,算出k = 8,确定反比例函数为y=8/x
(2)
(2)