英语从句(表语)

表语从句
主+系+表
 
表语从句是用一个句子作为表语,放在连系动词之后,构成复合句中的表语部分。它通常由“关联词+简单句”构成,且简单句中的句子语序为陈述语序。
 
常见系动词
①Be动词(am, is, are, was, were)
②感官系动词(look, sound, smell, taste, feel)
③变化系动词(become, get, grow, turn)
④持续系动词(keep, stay)
⑤表象系动词(Seem)
记忆法:好像是  五感  四变  两保持 
一、表语从句的连接词
表语从句的引导词主要包括连词、连接代词和连接副词,它们在从句中起连接和引导作用,但不充当句子成分(that除外,但that在从句中也不作任何成分,只起连接作用)。以下是一些常见的引导词及其用法:
(1)从属连词
引导表语从句的从属连词有两个:that和whether。that和whether在表语从句中不作任何成分,that无实义,但whether仍保留“是否”的意义。
① that:引导表语从句时,通常不翻译,且一般不省略(但在口语或非正式文体中有时可省略)。
eg: The fact is that he doesn’t really try. 事实是他并没有真正努力。

② whether:用于引导表语从句,表示“是否”。
eg: The question is whether the film is worth seeing. 这部电影是否值得看
③ because:用于引导表语从句,表示原因。
eg: It is becau

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值