- 博客(94)
- 收藏
- 关注
原创 使用OpenSearch进行向量存储和自查询检索的实战演示
在这篇文章中,我们将深入探讨如何使用OpenSearch进行向量存储,并结合自查询检索技术来优化搜索体验。OpenSearch是一款基于Apache Lucene的分布式搜索和分析引擎,灵活且可扩展,适用于搜索、分析和可观测性应用。
2025-07-11 12:00:50
304
原创 使用LangChain与Fireworks模型进行交互
Fireworks是一个专注于生成式AI的服务平台,通过其API可以访问多种强大的语言模型。这些模型可以用于文本生成、自动完成以及其他机器学习任务。而LangChain是一个工具库,方便用户与LLM(大型语言模型)进行交互,支持创建复杂的AI应用。
2025-07-11 11:54:24
497
原创 使用Xata实现聊天记忆和向量存储的AI对话系统
Xata 是一个现代的无服务器数据平台,允许开发者在不关心基础设施管理的情况下,利用其强大的数据存储和搜索能力。通过Xata提供的Python SDK,结合Langchain库及OpenAI API,我们可以构建一个拥有记忆能力和语义搜索功能的聊天机器人。
2025-07-10 15:17:05
481
原创 使用 Momento Cache 存储聊天消息历史
在构建聊天应用时,管理和存储聊天消息历史是一个常见需求。Momento Cache 提供了一种无服务器缓存方案,可以瞬时扩展、支持零配置并具备极快的性能。这使得它成为存储和检索聊天消息的一种理想工具。
2025-07-10 15:08:08
330
原创 使用LLM为NebulaGraph数据库提供自然语言接口的实践
NebulaGraph 是一个开源分布式图数据库,适用于超大规模图数据查询,实现毫秒级延迟。它使用 nGQL 作为查询语言,该语言具有声明式风格,并支持高效表达复杂图模式,既适合开发人员也适合运维人员。本文将演示如何利用大型语言模型(LLMs)为 NebulaGraph 提供自然语言查询接口。
2025-07-10 10:40:24
390
原创 使用Steam API和LangChain实现个性化游戏推荐
Steam是全球最大的游戏数字发行平台,由Valve Corporation开发,提供了丰富的游戏内容、社区交流以及游戏创作功能。通过Steam API,开发者可以访问游戏列表和用户资料,构建丰富的游戏应用功能。今天,我们将结合LangChain和Steam API,获取用户的游戏推荐和游戏信息。
2025-07-10 10:29:37
339
原创 使用Shell工具与Agents执行复杂任务
Shell命令行是操作系统中强大的工具,适用于文件操作、网络请求等。结合AI技术,让模型自动处理这些任务,将大幅提升我们的工作效率。本文将使用库中的ShellTool来实现自动化操作。
2025-07-09 15:13:30
417
原创 使用Zilliz Cloud Pipelines实现LangChain Retriever整合
Zilliz Cloud Pipelines是Zilliz Cloud上提供的一项功能,旨在帮助用户将非结构化数据转变为可搜索的向量集合。其主要功能包括数据的嵌入、摄取、搜索和删除。该服务通过Zilliz Cloud Console和RESTful API提供。
2025-07-09 15:10:08
257
原创 使用NeuralDB打造高效的文档检索引擎
在信息爆炸的时代,如何快速而准确地检索信息成为一个关键问题。NeuralDB通过结合神经网络的能力及数据库的检索特性,提供了一种高效的文档检索解决方案。
2025-07-09 15:06:59
136
原创 使用AI技术解析SEC文件提交
每个公开上市的公司都需要定期提交SEC文件,如10-K、10-Q等,这些文件详细记录了公司季度和年度财务表现。传统上,分析这些文档需要大量的人力和时间,而AI技术的介入极大地提高了效率。
2025-07-09 15:04:28
337
原创 强化文档检索的合并检索器(Lord of the Retrievers, LOTR)实践
在复杂的信息检索任务中,单一的检索器往往无法全面覆盖所有可能的相关文档。合并检索器方法允许我们结合多个检索器的结果,进一步提高检索系统的可靠性和精确性。
2025-07-09 15:00:13
253
原创 利用Fleet AI Context实现高效文档检索系统及代码生成
随着人工智能技术的进步,基于嵌入的文档检索系统正变得越来越流行。Fleet AI团队致力于将重要数据转换为高质量的嵌入,他们已经开始将最受欢迎的Python库(如LangChain)的文档嵌入化,以便在代码生成中拥有最新的知识。这为开发者提供了强大的支持,让我们可以更高效地从文档中提取信息,甚至自动生成相关代码。
2025-07-09 14:57:21
566
原创 使用 Weaviate 和 LangChain 构建强大向量存储的实战指南
通过结合 Weaviate 和 LangChain,开发者能够实现高效的文本检索和问答系统。在需要实时检索大量文本数据时,这种组合非常适合用于问答系统、聊天机器人以及搜索引擎等应用场景。如果遇到问题欢迎在评论区交流。
2025-07-02 16:27:57
197
原创 使用 Vespa 作为 LangChain 矢量存储的实践指南
Vespa 是一个功能齐全的搜索引擎和矢量数据库,它支持矢量搜索(ANN)、词汇搜索以及结构化数据搜索,可以在同一个查询中实现多种搜索方式。其广泛的应用场景使其成为构建智能检索系统的理想选择。本文将介绍如何将 Vespa 集成到 LangChain 作为矢量存储。
2025-07-02 16:26:47
120
原创 深入了解StarRocks向量存储的使用
StarRocks的向量存储可用于需要高效文本检索的场景,例如搜索引擎优化、实时分析以及自然语言处理应用。其快速的查询响应使得它在需要超大规模数据处理的场合中表现优异。如果遇到问题欢迎在评论区交流。
2025-07-02 16:19:40
211
原创 使用Jaguar Vector数据库实现RAG(Retrieval-Augmented Generation)与异常检测
JaguarDB提供了“ZeroMove”特性,支持即时水平扩展,擅长多模态数据处理(如文本、图像、视频等),支持多种距离度量方式。这使得它特别适合需要处理复杂数据类型和高可用性请求的场景。
2025-07-02 14:24:02
306
原创 使用 Google Vertex AI Feature Store 进行低延迟向量搜索
Google Cloud Vertex AI Feature Store 是一个强大的工具,专为处理特性管理和在线数据服务设计。借助低延迟数据检索能力,它特别适合于生产环境中的用户界面生成 AI 应用程序(GenAI)。其核心功能包括使用 BigQuery 数据进行向量搜索和检索,通过类实现低延迟数据同步。
2025-07-02 14:22:16
270
原创 使用DashScope Reranker进行文档压缩与检索
在这篇文章中,我们将探讨如何使用DashScope Reranker来优化文档压缩和检索。DashScope是阿里云提供的生成式AI服务,其中的文本重排序模型支持对多达4000个词条的文档进行重新排序,并支持包括中文、英文、日文等在内的多种语言。如果您想深入了解,可以访问。
2025-07-02 09:41:18
324
原创 使用LangChain加载和处理WhatsApp聊天数据
此代码示例展示了如何使用从指定路径加载聊天记录文件。这个工具简化了数据预处理步骤,使开发者能够关注于聊天内容的分析和处理。
2025-07-02 09:37:31
306
原创 使用Langchain Community的AscendEmbeddings实现文本嵌入
在自然语言处理(NLP)领域中,文本嵌入是一种将文本数据转换为数值向量的技术,它在诸多任务如搜索、相似度计算、分类等中表现突出。AscendEmbeddings是Langchain Community提供的一个嵌入模型,它能够有效地将文本转换为高质量的向量表示。
2025-07-01 15:57:57
125
原创 使用SearxNG API集成LangChain进行智能搜索
SearxNG 是一个聚合搜索引擎,它可以从多个来源获取搜索结果。通过其API接口,开发者可以在应用程序中集成定制化的搜索功能。对于希望在LangChain中使用SearxNG API的开发者,了解如何安装、配置和使用API封装器(Wrapper)至关重要。
2025-07-01 13:41:05
258
原创 使用OpenLLM与LangChain进行大语言模型推理
OpenLLM为开发者提供了一种简便的方式来运行和部署LLM模型。它支持多种开源模型,并允许用户使用自己的微调模型。通过该平台,用户可以通过HTTP或gRPC协议与OpenLLM服务器交互,或在本地直接进行模型推理。
2025-07-01 11:10:16
257
原创 利用Modal扩展LangChain自定义语言模型
Modal提供了一种简便的方式来定义和操作云函数,同时支持包括LLMs(大型语言模型)在内的多种功能。通过使用Modal,你可以轻松地将你的模型部署到云端,并通过稳定的WEB端点来访问这些模型功能。LangChain则是一个强大的库,它能够帮助开发者轻松构建复杂的语言处理链条,并集成各种语言模型。# 设置缓存路径,便于模型下载后存储# 定义下载模型的函数# 定义并设置函数容器镜像# 定义用于运行GPT-2模型的函数gpu="any", # 使用任何可用的GPU以加速推理。
2025-07-01 11:03:51
387
原创 使用 MLflow 部署大语言模型的实战指南
MLflow 部署模块专为简化大语言模型使用而设计。它通过提供一个统一的端点来处理特定的 LLM 相关请求,减少了不同服务商之间的差异。通过这种方式,企业可以更高效地管理其 AI 模型服务。
2025-07-01 11:02:31
369
原创 使用Log10进行LangChain调用的日志记录和调试
在上面的代码中,我们使用来记录LangChain的调用,并通过tags参数来分类这些调用,从而提高日志的可读性和可管理性。
2025-07-01 11:02:11
118
原创 使用LangChain集成ForefrontAI的实战指南
在AI开发中,选择合适的语言模型至关重要。ForefrontAI是一种先进的语言模型服务,提供了高度定制化的语言处理能力。通过LangChain框架,你可以轻松访问ForefrontAI的功能,将其优势应用于各种AI驱动的项目中。
2025-06-30 17:23:27
352
原创 使用Dedoc库进行文档解析与结构化数据提取
安装Dedoc库后,可以使用Dedoc的API来处理文档。如果你计划使用API,不需要直接安装Dedoc库。
2025-06-30 17:12:37
252
原创 CerebriumAI与OpenAI集成:使用Langchain实现无服务器GPU推理
CerebriumAI通过API形式提供了多种LLM模型的访问能力,使得开发者可以轻松调用GPU推理服务。此无服务器GPU基础设施允许用户在不需要管理硬件的情况下进行大规模计算,这对于需要动态扩展计算资源的AI开发者来说尤为有用。
2025-06-30 17:02:34
372
原创 使用LLMs查询Neo4j图数据库
这种结合LLMs的图数据库查询可以应用于任何需要自然语言查询的复杂关系数据场景。例如,在社交网络分析中,能够使用自然语言查询用户之间的关系,从而获取更直观的信息。我们将使用LangChain库中的工具来对图数据库进行操作。如果遇到问题欢迎在评论区交流。
2025-06-30 10:36:56
173
原创 Anthropic的Claude 3在LangChain中的长文档总结应用
Anthropic是一家人工智能公司,致力于创建安全可靠的AI模型。Claude-3是他们最新的语言模型,能够在超大上下文窗口下处理长文档任务,非常适合总结长篇内容。
2025-06-30 10:34:48
274
原创 使用Elasticsearch进行RAG实现:从环境配置到代码演示
RAG的主要思想是通过搜索相关信息来增强生成的文本,使得最终输出既准确又贴近上下文。Elasticsearch是一款广泛使用的开源搜索和分析引擎,它能够快速检索和处理大量文本数据。在这套实现中,我们使用模型进行文本嵌入,以便在Elasticsearch中进行高效搜索。
2025-06-27 15:48:32
377
原创 使用Fireworks的CodeLlama进行代码库的问答检索生成(RAG)
RAG技术结合了信息检索与生成模型,能够在给定上下文下生成更为准确的答案。在代码库中应用RAG有助于自动化代码评论、错误诊断、文档生成等任务,提高开发效率。
2025-06-27 15:47:00
150
原创 干净利落的自主RAG实现:rag-chroma-private模板详解
在传统RAG方法中,通常需要依赖外部API进行向量数据库的通信和模型调用。然而,这带来了许多问题,比如隐私泄露和速度瓶颈等。rag-chroma-private模板通过整合Ollama的LLM模型、GPT4All的嵌入技术和Chroma向量存储,可以在本地实现高效可靠的RAG过程。
2025-06-27 15:46:04
537
原创 构建一款保护个人信息的智能聊天机器人
个人信息(PII)是指包括姓名、身份证号码、联系方式等直接能够识别个人的信息。在与大型语言模型(LLM)进行交互时,确保这些信息不泄露给模型是相当必要的。因此,我们需要一个机制来自动识别并保护这些信息。在本项目中,我们将使用 LangChain 框架来构建一个允许筛选PII的聊天机器人。
2025-06-27 15:39:57
577
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人