NeuralDB是由ThirdAI开发的一款可以在CPU上运行且可调优的检索引擎。本文将详细介绍如何使用NeuralDB构建一个高效的文档检索系统。
技术背景介绍
在信息爆炸的时代,如何快速而准确地检索信息成为一个关键问题。NeuralDB通过结合神经网络的能力及数据库的检索特性,提供了一种高效的文档检索解决方案。
核心原理解析
NeuralDB允许用户通过NeuralDBRetriever对象来管理和查询文档。其核心是将文档转化为一个向量空间,通过计算与查询的相关性来返回匹配的结果。
代码实现演示
以下代码示例演示了如何从头开始初始化NeuralDB以及如何从检查点加载一个预训练模型:
from langchain.retrievers import NeuralDBRetriever
# 从头开始初始化NeuralDB
retriever = NeuralDBRetriever.from_scratch(thirdai_key="your-thirdai-key")
# 从检查点加载NeuralDB
retriever = NeuralDBRetriever.from_checkpoint(
checkpoint="/path/to/checkpoint.ndb",
thirdai_key="your-thirdai-key",
)
插入文档源
NeuralDB支持多种文档格式的插入和训练:
# 插入并训练文档
retriever.insert(
sources=["/path/to/doc.pdf", "/path/to/doc.docx", "/path/to/doc.csv"],
train=True,
fast_mode=True,
)
from thirdai import neural_db as ndb
# 插入自定义文档对象
retriever.insert(
sources=[
ndb.PDF("/path/to/doc.pdf", version="v2", chunk_size=100, metadata={"published": 2022}),
ndb.Unstructured("/path/to/deck.pptx"),
]
)
检索文档
要查询插入的文档,可以使用以下方法:
# 检索相关文档
documents = retriever.invoke("query", top_k=10)
for doc in documents:
print("Document ID:", doc.metadata.get("id"))
print("Source:", doc.metadata.get("source"))
print("Content:", doc.content)
微调
为了提高检索的精度和满足特定需求,NeuralDB提供了微调功能:
# 关联词汇微调
retriever.associate(source="source phrase", target="target phrase")
# 投票微调
retriever.upvote(query="how is a car manufactured", document_id=52)
应用场景分析
NeuralDB可用于构建企业内训知识库、客户支持文档检索、以及为特定领域定制的搜索引擎。其CPU友好的特性使其在资源有限的环境中依然表现优越。
实践建议
- 确保在训练阶段使用足够多的相关文档,以提高检索效果。
- 定期进行微调,确保检索结果随着用户需求的变化而保持相关性。
- 使用检查点功能来保存和加载模型,提高工作流的灵活性。
如果遇到问题欢迎在评论区交流。
—END—
1万+

被折叠的 条评论
为什么被折叠?



