Pandas 和 SQL对比

本文对比了SQL和Pandas在处理数据时的不同优势,包括滑动窗口计算、收入分配百分比、异常值处理、行列转换等场景。Pandas在某些复杂数据处理任务中展现出更高的效率和灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自认为比较熟悉SQL, 刚开始使用Pandas的时候,总觉得好多地方不如SQL处理来的便捷.但是在熟悉Pandas后,发现Pandas往往也有很简单的解决办法, 部分地方恰好是Pandas的优势地方.下面列出一些曾经遇到的场景:

滑动窗口/平滑各种曲线
应用场景:

当每个月份数据抖动比较大的时候,想把n个月的数据累积到一个月然后平均计算趋势.
1
DB解决方案:

没想到特别简单的方法.希望有心人给个提示
1
Pandas解决方案:

cost.sort_values(['city', 'month']).groupby('city')['score'].rolling(3).mean()
1
备注

很显然, Pandas要方便多了
1
Jupyter 示例
收入分配情况
应用场景:

一个人的支出会运用到多个领域,比如娱乐,教育,投资.现在需要计算每一条数据占当事人的支出百分比.
1
DB解决方案:

由于SQL写的会比较长,下面只介绍一下思路
1)通过分组,计算当前每个人的总收入
2)把第一步的结果集(子表)和原始表通过人来关联,然后计算百分比
1
2
3
Pandas解决方案:

cost['total'] = cost.groupby('person_id')['amount'].transform(sum)
cost['percentage'] = cost.amount/cost.total
1
2
备注:

哪种方案好,就不用多说了
1
Jupyter 示例
异常值的处理
应用场景:

异常值的处理,比如如果是统计小学生的各种生长指标,部分学生身高没有,如果用全局平均值去替代,这是明显不合适的.可选方案,就是取性别和年龄的平均值去替换.    
1
DB解决方案:

和上面的收入分配是完全类似的,也就是求每个年龄,性别的平均值,然后Join回去,最后在使用nvl去替换空值
1
Pandas解决方案:

df.groupby('age','gender')['height'].transform(lambda x: x.fillna(x.mean()))
1
备注:

哪种方案好,就不用多说了
1
Jupyter 示例
行列转换
应用场景:

行列转换
1
DB解决方案:

行转列: 多次select之后union
列转行: select id, max(case when type='gender' then value else null end) gender
       from student 
       group by id
1
2
3
4
Pandas解决方案:

行转列: student.stack()
列转行: student.stack().unstack()
1
2
备注:

当有多列时,DB的解决方案会看起来十分累赘
1
Jupyter 示例
分组排序(row_number)
应用场景:

找出学校每个班级成绩最好的一个人
1
DB解决方案:

select * from (SELECT class_id, student_id,, Row_Number() OVER (partition by class_id ORDER BY score desc) rank FROM student_score ) where rank=1
1
Pandas解决方案:

student_score.sort_value(['class_id', 'score'], False).groupby('class_id').nth(0)
1
备注:

2种方案差不多, pandas稍稍好一点点.
1
Jupyter 示例

删除多余记录
应用场景:

比如你的数据库里面有一个学生成绩的多条历史数据,你只想得到最后的一条数据.
1
DB解决方案:

select * from student_score where id in (
    select max(id) from student_score group by student_id
)   
1
2
3
Pandas解决方案:

student_score.drop_duplicate(subset='student_id',keep='last')
1
备注:

2种方案差别不大
1
Jupyter 示例
环比
应用场景:

DB解决方案:

select c2.city, c2.month,  (c2.score - c1.score)/c1.score
from cost c1, cost c2 where 
    c1.month = c2.month-1
    and c1.city = c2.city
1
2
3
4
Pandas解决方案:

cost['previous'] = cost.sort_values(['city', 'month']).groupby('city')['score'].shift(1)
cost['percentage'] = (cost.score -  cost.previous)/cost.previous
1
2
备注:

2种Solution差别不大,但是感觉熟悉后Pandas要更直接些
1
Jupyter 示例
行级别的汇总
应用场景:

比如一个城市的PM2.5每分钟一次采样, 每天24*60条记录保存为一行. 现在的应用如果是要计算每天的PM2.5最高的值是多少, 什么时候是最高值
1
DB解决方案:

最大值:select greatest(col1, col2, col3, ***) , day from records

最大值对应的时间:没想到好办法
1
2
3
Pandas解决方案:

最大值:df['max'] = df.apply(lambda row: max(row), axis=1)

最大值对应的时间: df['min_sn'] = df.apply(lambda row: row.idxmax() , axis=1)
1
2
3
备注:

很显然Pandas功能上要合适些,并且当Column数量比较多时, Pandas的优势更明显
1
Jupyter 示例

结论
不同的技术应用于不同的场景,这种对比一定程度是不公平的.比如SQL最擅长的Join操作,这里就没有涉及.这样对比的目的,只是为了更好的理解SQL 和 Pandas不同的特点
--------------------- 
作者:flyfoxs 
来源:CSDN 
原文:https://blog.csdn.net/flyfoxs/article/details/81322649 
版权声明:本文为博主原创文章,转载请附上博文链接!

<think>好的,我现在需要回答用户关于pandasSQL的问题。用户之前询问过古今中外的著名工程,现在转向技术工具,可能是在学习数据分析或者数据处理相关的内容。用户的需求可能是想了解这两个工具的基本概念、区别以及适用场景。 首先,我要回忆一下pandasSQL各自的特点。Pandas是一个Python库,主要用于数据操作分析,而SQL是用于管理关系型数据库的查询语言。用户可能想知道它们的功能对比,如何选择使用,或者是否有必要同时学习两者。 接下来,我需要确定回答的结构。可能需要分点介绍,比如定义、核心功能、使用场景、语法对比等。还要注意用户可能对两者的异同点感兴趣,比如在处理数据时的不同方式,性能差异,以及如何结合使用。 另外,用户可能不太熟悉技术细节,所以需要避免过于专业的术语,用通俗易懂的语言解释。例如,可以举例说明何时用pandas处理数据,何时用SQL查询数据库,或者两者如何配合使用。 同时,要注意用户之前的问题都是关于工程的,这次转向技术工具,可能用户正在扩展学习领域,可能需要一些学习建议,比如先学哪个,或者如何结合学习。 还需要检查是否有常见的误区需要澄清,比如有人认为SQL只能在数据库中使用,而pandas只能处理内存中的数据,但实际上两者可以互补。例如,可以用SQL从数据库中提取数据,然后用pandas进行更复杂的分析或可视化。 另外,可能需要提到性能方面的考虑,比如处理大数据时,SQL数据库的效率可能更高,而pandas适合中小规模的数据处理。但也要注意,pandas可以处理的数据量受内存限制,而SQL数据库可以处理更大的数据集。 还要考虑两者的语法差异,比如SQL的声明式语法(SELECT * FROM table WHERE condition)pandas的命令式语法(df[df['column'] > value]),可能需要举例说明。 最后,总结部分应该强调两者的优势适用场景,以及在现代数据分析中的互补性,推荐根据具体需求选择合适的工具,或者结合使用以提高效率。</think>以下从数据处理角度对比分析Python的pandas库与SQL数据库查询语言: --- ### **核心定位差异** | 维度 | pandas (Python库) | SQL (数据库语言) | |-----------|-----------------------------------|----------------------------| | **本质** | 内存中的二维数据表操作工具 | 关系型数据库管理系统(RDBMS)的交互标准 | | **数据规模** | 受内存限制(通常GB级以下) | 支持TB级数据存储与处理 | | **执行环境** | 单机运算 | 支持分布式集群 | | **主要场景** | 数据清洗/分析/可视化 | 数据存储/事务管理/复杂查询 | --- ### **功能实现对比** #### **数据查询** ```python # pandas筛选年龄>30的记录 df[df['age'] > 30] # SQL等效操作 SELECT * FROM table WHERE age > 30 ``` #### **聚合计算** ```python # pandas按城市统计平均薪资 df.groupby('city')['salary'].mean() # SQL等效 SELECT city, AVG(salary) FROM employees GROUP BY city ``` #### **表连接** ```python # pandas的merge操作 pd.merge(orders, customers, on='customer_id') # SQL等效 SELECT * FROM orders JOIN customers ON orders.customer_id = customers.id ``` --- ### **性能关键点** 1. **索引机制** - pandas:支持自定义索引(行标签加速查询) - SQL:B+树索引优化百万级数据检索 2. **延迟执行** - SQL查询优化器自动选择执行计划 - pandas操作实时执行(可通过Dask实现延迟计算) 3. **IO瓶颈** - pandas读取CSV:10万行约0.5秒 - SQL查询同等数据:0.01秒(索引命中时) --- ### **混合使用场景** #### **典型工作流** 1. 使用SQL从数据库抽取核心数据 ```python import sqlalchemy engine = create_engine('postgresql://user:pass@localhost/db') df = pd.read_sql("SELECT id, name FROM users WHERE reg_date > '2023-01-01'", engine) ``` 2. 在pandas中进行复杂转换 ```python # 计算用户行为特征 df['purchase_freq'] = df['total_orders'] / df['active_days'] df = pd.get_dummies(df, columns=['user_type']) ``` 3. 将结果回写数据库 ```python df.to_sql('user_analysis', engine, if_exists='replace') ``` --- ### **选型建议** | **需求场景** | **推荐工具** | **原因说明** | |-------------------------|----------|------------------------| | 快速数据探索/可视化 | pandas | Jupyter环境交互便利 | | 高频更新的交易记录管理 | SQL | ACID特性保障数据一致性 | | 10GB以上数据关联查询 | SQL | 基于磁盘的查询优化优于内存操作 | | 复杂统计建模/机器学习特征工程 | pandas | 与scikit-learn等库无缝对接 | | 需要实时响应的在线业务系统 | SQL | 预编译语句连接池提升并发性能 | --- ### **进阶技巧** 1. **pandasql库** - 在pandas中直接执行SQL查询 ```python from pandasql import sqldf result = sqldf("SELECT MAX(age) FROM df WHERE department='Sales'") ``` 2. **SQL窗口函数模拟** - pandas实现分组排名 ```python df['sales_rank'] = df.groupby('region')['sales'].rank(ascending=False) ``` 3. **矢量化运算优化** - 避免pandas循环 ```python # 低效写法 for i in range(len(df)): df.loc[i,'bonus'] = df.loc[i,'sales'] * 0.1 # 高效矢量化 df['bonus'] = df['sales'] * 0.1 ``` --- 掌握pandasSQL的协同使用,能大幅提升从数据存储到分析应用的全链路效率。建议: 1. 中小型数据分析优先使用pandas 2. 生产环境大数据处理依赖SQL 3. 混合架构下通过`pd.read_sql()`与`to_sql()`实现数据流转
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值