集合覆盖问题——回溯法 Python实现

集合覆盖问题。给定集合 X={x1,x2,…xn}\mathrm{X}=\left\{x_1, x_2, \ldots x_n\right\}X={x1,x2,xn}X\mathrm{X}X 的一个子集簇 F={f1,f2,…fn}\mathrm{F}=\left\{f_1, f_2, \ldots f_n\right\}F={f1,f2,fn}, 其中 fi⊆Xf_i \subseteq \mathrm{X}fiX 。求 F\mathrm{F}F 的一个最小子集 C⊆F\mathrm{C} \subseteq \mathrm{F}CF, 使得 C\mathrm{C}C 中的集合能够覆盖集合 X\mathrm{X}X, 即 US∈CS=\mathrm{U}_{S \in C} S=USCS= XXX 。基于回溯法或分支界限法策略, 设计一个求解集合覆盖问题的算法。实现该算法并测试。

使用回溯法来解决集合覆盖问题,对于每一个子集有两种选择,选或者不选。适当的利用剪枝函数限界函数以减少搜索的空间:

  • 剪枝函数:当目前子集并集已经包含了原始集合XXX,提前结束。
  • 限界函数:当前集合个数已经超过了目前最优解的集合个数。

回溯法

  • 开始以一个空的当前解集合和一个空的最优解集合。
  • 在搜索树中不断扩展节点。在每个节点上,选择包含或不包含当前子集合,然后将搜索树分支出两个子节点。
  • 使用一个界限条件来决定是否要进一步探索某个分支,这个界限条件是当前解的大小是否已经超过当前最优解。
  • 当遍历搜索树并更新最优解时,在找到满足界限条件的节点时剪枝(不再继续搜索该分支),以加速搜索过程。
import random
import sys


class SetCover:
    def __init__(self) -> None:
        self.best_solution_length=sys.maxsize
        self.best_solution = None

    def set_cover_recursive(self, universe, subsets, current_solution=None):

        if current_solution is None:
            current_solution = []
        # 如果已经完全覆盖,提前返回结果
        if not universe:
            # 如果当前解集合个数小于当前最优解,保存
            if len(current_solution) < self.best_solution_length:
                return current_solution
            else:
                return None

        if not subsets:
            return None

        # 选择当前子集
        current_subset = subsets[0]
        remaining_subsets = subsets[1:]

        # 只有当选择后,子集数量不超过当前最优解,才能继续选入
        if len(current_solution) + 1 < self.best_solution_length:
            # 如果选择当前子集
            solution = self.set_cover_recursive(universe - current_subset, remaining_subsets, current_solution + [current_subset])
            if solution is not None:
                self.best_solution = solution
                self.best_solution_length = len(solution)
        # 如果不选择当前子集
        self.set_cover_recursive(universe, remaining_subsets, current_solution)
        return self.best_solution

universe = set()
size = 10
for i in range(size):
    universe.add(i)

subsets = []
subsetNum = 6
for _ in range(subsetNum):
    temp = set()
    for _ in range(random.randint(0, size - 1)):
        temp.add(random.randint(0, size - 1))
    subsets.append(temp)

print("全集:", universe)
print("子集:", subsets)
solution = SetCover().set_cover_recursive(universe, subsets)
print("解决方案:", solution)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值