SwishGLU 是一种激活函数,结合了 Swish 和 GLU(Gated Linear Unit)的特性。它通过引入门控机制来增强模型的表现,尤其是在处理复杂特征时。Swish 本身是一个平滑的激活函数,具有更好的性能,而 GLU 则利用门控结构来控制信息的流动。
SwishGLU 的实现可以分为几个步骤。首先,我们需要了解 Swish 和 GLU 的定义:
-
Swish 激活函数:
Swish(x)=x⋅σ(x) \text{Swish}(x) = x \cdot \sigma(x) Swish(x)=x⋅σ(x)
其中,σ(x)\sigma(x)σ(x) 是 Sigmoid 函数。 -
GLU 激活函数:
GLU(A,B)=A⋅σ(B) \text{GLU}(A, B) = A \cdot \sigma(B)