Embedding 嵌入
Embedding嵌入创建一段文本的矢量表示。这很有用,因为这意味着我们可以考虑向量空间中的文本,并执行语义搜索之类的操作,在其中查找向量空间中最相似的文本片段。
LangChain 中的基类 Embeddings
提供了两种方法:一种用于嵌入文档
,另一种用于嵌入查询
。前者 embed_documents
采用多个文本作为输入,而后者 embed_query
采用单个文本。
embed_documents
embed-documents
将文本嵌入为embeddings(向量)。
embeddings = embeddings_model.embed_documents(
[
"Hi there!",
"Oh, hello!",
"What's your name?",