CLIP 连接视觉与语言大模型

在这里插入图片描述
直接将图片和文本都通过Encoder,分别得到图片和文本的向量表示,让配对的图片和文本尽可能接近,其他的配对都尽可能远离。(对比学习)

在这里插入图片描述
分别对文本和图片计算交叉熵损失,最后将两个损失加起来平均。
在这里插入图片描述
模型推理是还是需要输入句子,然后得到最相近的句子,那个相似度最大对应那个类别。
这也是最早的prompt工程,直接输入类别名,不如输入一个带类别名的句子分类效果更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值