WHAT MAKES GOOD DATA FOR ALIGNMENT? A COMPREHENSIVE STUDY OF AUTOMATIC DATA SELECTION IN INSTRUCTION

这篇文章提出了DEITA的数据集筛选方法

进化复杂度

目前评估复杂度的几种方法:

  1. 随机选择
  2. 长度
  3. 困惑度
  4. 大模型评分
  5. 指令结点数
  6. 评分模型(Instag)
  7. IFD

本文的做法:
让GPT给一个指令增加复杂度,生成6段对应的文本。然后用GPT给这六段文本打分和排序。不同于一次一次打分,一次给6段原意相同的文本再打分,作者说效果更好。作者说如果是一个一个单独评,大模型倾向都给高分。

在这里插入图片描述

进化质量

方法完全相同,直接看结果
在这里插入图片描述

多样性方法:

直接使用embedding,然后计算余弦距离d,当d<threshold才加入?感觉这里是写错了,应该是余弦相似度?选距离近的点怎么会增加多样性。

完整方法

在这里插入图片描述
先从质量和复杂度两个角度,将一个指令扩展成6个指令,然后让GPT对这6个指令一起打分。得到打分的结果后,训练两个Llama对数据进行评价。

得到质量和复杂度两个评价后,简单的将两者相乘,作为指标的结果。然后按照这个得分排序,一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值