LLM系列:大模型训练如何计算显存占用

FP32:32Bit,4个字节
FP16:32Bit,2个字节

1. 输入输出

batch_szieSequencehidden size * 2/1024/1024
一条的大小约为20M
可忽略不计

2. 模型参数

以Llama13B为例,1B=100031000^310003,1GB=102431024^310243byte FP16:13*2=26GB

3. 优化器

以Adam为例,需要保存梯度动量和二阶矩,而且是FP32,占用了13*4=52GB。‘

优化器必须使用FP32,防止小数相加sum或者mean操作后,变为0等问题。
并且还要保存模型参数13*4=52GB
一共需要156GB

4. 激活值

为了梯度传播,前向传播的激活值都要保存。这一部分与batch_size有关。

5. 梯度值

梯度使用FP16,一共13*2=26B

在这里插入图片描述
除了输入输出,激活值跟batchsize有关,其他一般都较为固定。一般显存占用就是8倍的模型大小。也可以直接使用多少B16,例如13B模型,约等于1316=208。

### 如何训练大规模语言模型 #### 框架选择 在训练大规模语言模型时,可以选择主流的深度学习框架,如 TensorFlow 或 PyTorch。这些框架提供了丰富的功能来支持复杂的神经网络结构和高效的计算能力[^1]。 #### 配置训练参数 为了优化模型性能,在训练过程中需要合理配置多个超参数。这包括但不限于学习率、批次大小以及训练轮数等重要指标。通过调整这些参数可以有效提升模型收敛速度及其最终效果。 #### 分布式训练策略 对于非常庞大的数据集或者复杂度较高的模型架构而言, 单机单卡可能无法满足需求。此时可采用分布式训练技术提高效率。具体来说就是增加参与运算节点的数量并设计好它们之间信息交换的方式以便于协调工作进程。 #### 存储管理与精度控制 考虑到资源消耗问题,在实际操作当中还需要注意内存占用情况。例如当使用混合精度训练时(即同时利用float16和float32两种浮点格式),虽然能够减少一半以上的显存用量,但也增加了额外维护adam optimizer所需空间的需求。因此要仔细权衡各方面因素做出最佳决策[^3]。 #### 工具链整合建议 如果希望进一步简化流程,则可以考虑借助一些专门针对此类任务开发出来的解决方案比如ollama这样的项目就非常适合用来处理涉及多门编程语言的应用场景,并且它还特别强调了跟python生态系统之间的紧密联系从而方便更多开发者上手实践[^4]。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") input_ids = tokenizer.encode('Hello world', return_tensors='pt') outputs = model.generate(input_ids=input_ids) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 上述代码片段展示了如何加载预训练好的GPT-2模型并通过其生成一段文本内容作为例子说明整个过程中的部分环节是如何实现的具体细节方面的介绍[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值