目录
AlexNet: ImageNet Classification with Deep Convolutional Neural Networks
论文研究背景
- ILSVRC:大规模图像识别挑战赛
ImageNet 数据集包含 21841 个类别, 14,197,122张图片
论文研究成果及意义
• 拉开卷积神经网络统治计算机视觉的序幕
• 加速计算机视觉应用落地
论文结构
摘要
- 在ILSVRC-2010的120万张图片上训练深度卷积神经网络,获得最优结果,top-1和top-5 error分别为 37.5%, 17%
- 该网络(AlexNet)由
5个卷积层和3个全连接层
构成,共计6000万参数,65万个神经元 - 为加快训练,采用
非饱和激活函数——ReLU
,采用GPU训练
- 为减轻过拟合,
采用Dropout
- 基于以上模型及技巧,在ILSVRC-2012以超出第二名10.9个百分点成绩夺冠
论文小标题
- Introduction
- The Dataset
- The Architecture
3.1 ReLU Nonlinearity
3.2 Training on Multiple GPUs
3.3 Local Response Normalization
3.4 Overlapping Pooling
3.5 Overall Architecture - Reducing Overfitting
4.1 Data Augmentation
4.2 Dropout - Details of learning
- Results
6.1 Qualitative Evaluations - Discussion
AlexNet结构
网络包含8个带权重的层
;前5层是卷积层,剩下的3层是全连接层
。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布。我们的网络最大化多项逻辑回归的目标,这等价于最大化预测分布下训练样本正确标签的对数概率的均值。