力扣43题 找到字符串中所有字母异位词C++ && 滑动窗口-个人理解存档

本文讨论了如何使用unordered_map和遍历来检查字符串是否为字母异位词,但发现这种方法会导致时间复杂度为O(n^2)。随后作者引入了滑动窗口的概念,通过固定大小的数组计数实现线性时间复杂度的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.0我的笨蛋想法

使用一个unordered_map<char,int> pMap存储p中的元素及个数,key为char,value为该字符出现的次数。

顺次遍历s字符串,如果s[i]在pMap中,将s[i]对应的计数--,如果对应计数到0,清除当前key,当pMap空了的时候,说明这一段就是字母异位词;如果s[i]不在pMap中,说明这一段不是字母异位词。

当时想着【遍历一遍】就解决,那如果s[i]不在pMap中,前面这一段就都不可以复用,然后i就可以接下去继续遍历不用回头,但是如果s=”abab",p="ab"的情况,当读到第二个a时,以b开头的段就会被忽略,所以为了不漏解,还是得回头,整个时间复杂度就来到了O(n^2)。所以就在一些测试用例上狠狠超时了。

所以其实我还是没掌握滑动窗口。😓

1.0我的超时题解

vector<int> findAnagrams1(string s, string p) {
        // 组成串的元素是相同的 
        // 构造子串的元素集合
        unordered_map<char,int> pMap;//key-char value-times出现次数
        for(char c : p){
            if(pMap.find(c)!=pMap.end()){
                pMap.find(c)->second++;
            }
            else{
                pMap.insert({c,1});
            }
        }
        // 找到一个在pMap的再开始检测
        vector<int> indexList;
        for(int i=0;i<s.size();){
            //如果从j开始,到k时不在pMap中,那就从k+1开始考虑
            if(pMap.find(s[i])!=pMap.end()){
                cout<<"Try to start with "<<s[i]<<" at index "<<i<<endl;
                // 先尝试加入当前序号
                indexList.push_back(i);
                unordered_map<char,int> copyPMap=pMap;
                copyPMap.find(s[i])->second--;
                cout<<"Find "<<s[i]<<endl;
                if(copyPMap.find(s[i])->second==0){
                    // 清除已经查找到的元素
                    copyPMap.erase(s[i]);
                    cout<<"Find all "<<s[i]<<endl;
                }
                //检查下一个
                int j=i+1;
                // i++;
                while(copyPMap.find(s[j])!=copyPMap.end()){
                    //能找到
                    copyPMap.find(s[j])->second--;
                    cout<<"Find "<<s[j]<<endl;
                    if(copyPMap.find(s[j])->second==0){
                        // 清除已经查找到的元素
                        cout<<"Find all "<<s[j]<<endl;
                        copyPMap.erase(s[j]);
                    }
                    j++;
                }
                // 退出循环可能是找到了 也可能是被打断了
                if(copyPMap.size()==0){
                    // 都被找到了
                    // 考虑 abab的情况,a考虑完还得从b开始
                    cout<<"Success to start with "<<s[i]<<" at index "<<i<<endl;
                    i++;
                }
                else{
                    // 被打断了 前面的尝试都不再可能,从j开始尝试 ???
                    cout<<"Fail to start with "<<s[i]<<" at index "<<i<<endl;
                    indexList.pop_back();//这个尝试是失败的
                    i++;
                }
            }
            else{
                i++;
            }
        }
        return indexList;
    }

0.1 真正的滑动窗口!!

有几个点是关键:

1.只有小写字母,可以参考以往的子串之类的方法,直接用一个大小为26的数组进行计数统计,直接比较数组是否相等也很快;

2.p是标准,所以窗口的大小是固定的

3.如果i作为窗口开始的位置,窗口长度为pLen,窗口结束的位置应该是i+pLen-1,当滑动的时候,需要清除i-1位置的计数,新增i-1+Lpen位置的计数

最后一个窗口的开始位置应该满足i+pLen-1<sLen 化简得 i<sLen-pLen+1

是真正意义上的一次遍历不用回头重复计算

1.1真正的滑动窗口题解

vector<int> findAnagrams(string s, string p){
        // s的子串长度一定和p长度一致,所以窗口大小是固定的
        // 全是小写字母 使用数组进行计数——可以通过直接比较数组是否相同来判断是否为。。。子串
        int sLen=s.size(),pLen=p.size();
        if(sLen<pLen) return vector<int>();//p比s还多,不可能
        vector<int> res;//存滑动窗口的开头序号
        vector<int> sCount(26);//固定大小 因为只有26个小写字母
        vector<int> pCount(26);
        // 初始化pCount
        for(int i=0;i<pLen;i++){
            pCount[p[i]-'a']++;
        }

        // 先初始化,从0开始的第一个窗口 窗口大小为pLen
        for(int i=0;i<pLen;i++){
            sCount[s[i]-'a']++;
        }
        // 判断第一个窗口是不是可行的
        if(sCount==pCount){
            res.push_back(0);
        }
        // 开始滑动窗口
        // 如果i作为窗口开始的位置,窗口长度为pLen,窗口结束的位置应该是i+pLen-1,当滑动的时候,需要清除i-1位置的计数,新增i-1+Lpen位置的计数
        // 最后一个窗口的开始位置应该满足i+pLen-1<sLen i<sLen-pLen+1
        for(int i=1;i<sLen-pLen+1;i++){
            sCount[s[i-1]-'a']--;
            sCount[s[i+pLen-1]-'a']++;
            // 更新完后判断当前窗口是否可行
            if(sCount==pCount){
                res.push_back(i);
            }
        }
        return res;
    }

### 力扣 1456 :定长子串中元音的最大数目(滑动窗口算法 C++ 实现) 这道的核心思想是使用**滑动窗口**算法来高效地计算每个长度为 `k` 的子串中包含的元音字母数量,并找出最大值。 #### 解法分析 目要求在字符串 `s` 中找到长度为 `k` 的所有子串中,元音字母(a, e, i, o, u)数量最多的那个子串中的元音数量。 滑动窗口的基本思路如下: 1. **初始化窗口**:首先统计初始窗口(即从索引 `0` 到 `k-1` 的子串)中元音的数量。 2. **滑动窗口移动**:从索引 `k` 开始,每次向右移动一个字符,将新进入窗口的字符判断是否为元音,同时将离开窗口的字符也进行判断并更新计数。 3. **维护最大值**:在整个过程中维护一个变量,记录当前窗口中元音的最大数量。 #### C++ 实现代码 ```cpp #include <string> #include <algorithm> using namespace std; class Solution { public: int maxVowels(string s, int k) { int n = s.size(); int num = 0; // 初始化第一个窗口的元音数量 for (int i = 0; i < k; i++) { if (isVowel(s[i])) { num++; } } int res = num; // 滑动窗口遍历整个字符串 for (int i = k; i < n; i++) { if (isVowel(s[i])) { num++; // 新加入窗口的字符是元音 } if (isVowel(s[i - k])) { num--; // 离开窗口的字符是元音 } res = max(res, num); } return res; } private: bool isVowel(char c) { return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'; } }; ``` #### 时间复杂度与空间复杂度 - **时间复杂度**:`O(n)`,其中 `n` 是字符串 `s` 的长度。每个字符最多被访问两次(一次加入窗口,一次移出窗口),因此整体复杂度为线性。 - **空间复杂度**:`O(1)`,仅使用了常量级别的额外空间[^5]。 #### 优化点 - 在判断字符是否为元音时,可以使用哈希集合(如 `unordered_set<char>`)来提高查找效率,但在这个实现中直接使用条件判断更为简洁高效。 - 当窗口内元音数量达到最大可能值 `k` 时,可以直接返回结果,提前结束循环。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值