机器学习中的数学——常用概率分布(三):二项分布(Binomial分布)

这篇博客详细介绍了机器学习中常见的十二种概率分布,包括伯努利、范畴、二项、均匀、高斯、指数、拉普拉斯、狄拉克、经验、贝塔、狄利克雷和逻辑斯谛分布。特别地,二项分布用于描述独立伯努利实验中成功的次数,其期望值为实验次数乘以成功概率,方差为实验次数乘以成功概率乘以(1-成功概率)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《机器学习中的数学》总目录
相关文章:
· 常用概率分布(一):伯努利分布(Bernoulli分布)
· 常用概率分布(二):范畴分布(Multinoulli分布)
· 常用概率分布(三):二项分布(Binomial分布)
· 常用概率分布(四):均匀分布(Uniform分布)
· 常用概率分布(五):高斯分布(Gaussian分布)/正态分布(Normal分布)
· 常用概率分布(六):指数分布(Exponential分布)
· 常用概率分布(七): 拉普拉斯分布(Laplace分布)
· 常用概率分布(八):狄拉克分布(Dirac分布)
· 常用概率分布(九):经验分布(Empirical分布)
· 常用概率分布(十):贝塔分布(Beta分布)
· 常用概率分布(十一):狄利克雷分布(Dirichlet分布)
· 常用概率分布(十二):逻辑斯谛分布(Logistic 分布)


二项分布(Binomial分布)用以描述 N N N次独立的伯努利实验中有 m m m次成功,即 x = 1 x=1 x=1的概率,其中每次伯努利实验成功的概率为 ϕ ∈ [ 0 , 1 ] \phi\in[0,1] ϕ[0,1]
B i n ( m ∣ N , ϕ ) = C N m ϕ m ( 1 − ϕ ) N − m Bin(m|N, \phi)=C_N^m\phi^m(1-\phi)^{N-m} Bin(mN,ϕ)=CNmϕm(1ϕ)Nm

和伯努利分布类似,二项分布也有如下性质:

  • E [ x ] = N ϕ E[x]=N\phi E[x]=Nϕ
  • V a r ( x ) = N ϕ ( 1 − ϕ ) Var(x)=N\phi(1-\phi) Var(x)=Nϕ(1ϕ)