【目标检测-YOLO】YOLOv5-v5.0-yolov5s网络架构详解(第一篇)

本文详细解析YOLOv5 v5.0版本的yolov5s网络架构,包括使用Netron进行可视化的过程,探讨Conv2d + BN + SiLU结构中的疑问,如BN消失的原因,以及如何通过修改代码导出ONNX模型以显示更多细节。最后,文章展示了使用PPT绘制的网络结构图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### YOLOv5 5.0代码详解及功能解读 YOLOv5 是一种高效的目标检测框架,其代码结构清晰且易于扩展。以下是对 YOLOv5 5.0 版本代码的详细解释和功能解读。 #### 1. 目录结构 YOLOv5 的目录结构设计合理,便于用户快速上手。以下是主要目录及其功能[^2]: - **data**: 存放超参数配置文件(如 `yaml` 文件),用于定义训练集、测试集和验证集的路径,以及目标检测的种类数和种类名称。 - **models**: 包含网络模型的定义文件,例如 `yolov5s.yaml` 等。 - **utils**: 提供工具函数,例如数据加载、日志记录等。 - **train.py**: 主要负责模型的训练过程。 - **detect.py**: 用于推理和检测任务。 #### 2. 数据处理 在 YOLOv5 中,数据处理是关键部分之一。以下是数据处理的主要步骤[^4]: - **数据增强**: 包括随机缩放、裁剪、翻转等操作,以提高模型的泛化能力。 - **图像预处理**: 使用 `letterbox` 函数将输入图像调整为固定大小,同时保持宽高比不变。 - **标签格式转换**: 将标注信息从原始格式转换为 YOLO 格式(归一化的中心点坐标和宽高)。 #### 3. 模型训练 训练过程集中在 `train.py` 文件中,具体实现如下[^1]: ```python class Solver(object): def __init__(self, net, data_loader): self.net = net self.data_loader = data_loader self.timer = Timer() def train(self): for epoch in range(cfg.MAX_EPOCHS): for i, (images, labels) in enumerate(self.data_loader): self.timer.tic() loss = self.net.train_step(images, labels) self.timer.toc() print(f"Epoch {epoch}, Iter {i}, Loss: {loss}") ``` 上述代码展示了训练的核心逻辑:通过迭代数据加载器,计算损失并更新模型参数。 #### 4. 推理与检测 推理过程主要由 `detect.py` 实现,以下是关键步骤[^3]: - **模型加载**: 使用 `attempt_load` 函数加载预训练权重。 - **前向传播**: 调用 `model.forward()` 方法进行推理。 - **非极大值抑制 (NMS)**: 使用 `non_max_suppression` 函数筛选出置信度较高的预测框。 #### 5. 模型改进 YOLOv5 引入了 P6 模型,增加了额外的输出层,适用于检测更大尺寸的目标[^4]: ```python P6 models include an extra P6/64 output layer for detection of larger objects. ``` ### 示例代码 以下是一个简单的推理代码示例: ```python import torch from models.experimental import attempt_load from utils.general import non_max_suppression # 加载模型 model = attempt_load('yolov5s.pt', map_location=torch.device('cpu')) # 前向传播 img = torch.randn(1, 3, 640, 640) pred = model(img) # 非极大值抑制 det = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.45) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值