一、围绕原点旋转
如下图, 在2维坐标上,有一点p(x,y)p(x, y)p(x,y) , 直线opopop的长度为rrr, 直线opopop和x轴的正向的夹角为aaa。 直线opopop围绕原点做逆时针方向bbb度的旋转,到达p′(s,t)p'(s,t)p′(s,t)
s=rcos(a+b)=rcos(a)cos(b)–rsin(a)sin(b)s = r cos(a + b) = r cos(a)cos(b) – r sin(a)sin(b)s=rcos(a+b)=rcos(a)cos(b)–rsin(a)sin(b) (1.1)
t=rsin(a+b)=rsin(a)cos(b)+rcos(a)sin(b)t = r sin(a + b) = r sin(a)cos(b) + r cos(a) sin(b)t=rsin(a+b)=rsin(a)cos(b)+rcos(a)sin(b) (1.2)
其中 x=rcos(a)x = r cos(a)x=rcos(a) , y=rsin(a)y = r sin(a)y=rsin(a)
代入(1.1), (1.2) 得
s=xcos(b)–ysin(b)s = x cos(b) – y sin(b)s=xcos(b)–ysin(b) (1.3)
t=xsin(b)+ycos(b)t = x sin(b) + y cos(b)t=xsin(b)+ycos(b) (1.4)
那么矩阵表达式就是:
(st) =(cosβ−sinβsinβcosβ)×(xy) \begin{pmatrix} s \\ t \end{pmatrix} \ = \begin{pmatrix} cos\beta \quad -sin\beta \\ sin\beta \quad cos\beta \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} (s