2020牛客暑期多校训练营(第八场)A、E、G、I、K题解及补题

2020牛客暑期多校训练营(第八场)题解及补题

比赛过程

这场打的罚时太高了,一开始没有想到签到题就需要用算法,一直在想贪心策略,冷静下来想用并查集和拓扑排序做了,K题一开始思路没有问题,但是有一些小细节错误和没有及时注意到暴longlong了,导致wa的太多,顺便学习了__int128的用法。G题数据量看似 O ( n 3 ) O(n^3) O(n3) 不可行,其实跑不满,直接莽就可以了,不过在比赛的时候还是把 o ( n 2 ) o(n^2) o(n2) 的做法写出来了。

题解

(没过/没补的题空着不管,过了/补了的题目写题意/解法/代码)

(如果要写数学式子用 LaTeX \LaTeX LATEX,比如表达式 x 2 + 2 x + 1 x^2+2x+1 x2+2x+1)

A

题意

n n n 个球员, m m m 个粉丝。给出每个球员的所有粉丝。
如果一个人是这个球员的粉丝,那么这个人喜欢看这个球员。
如果A和B都喜欢看同一个球员,那么如果B喜欢看的球员A也喜欢看。
问最少需要多少球员才能让每一个粉丝都愿意看,即至少有一个喜欢看的球员入选。有 q q q 次粉丝关系的修改,修改完回答询问。

解法

事实上这题就是求连通块的个数,如果有球迷的度为 0 0 0,那么答案为-1,否则答案为连通块个数-孤立球员个数。使用可撤销并查集来维护。记录每一条边的存在时间,使用线段树来维护边的存在时间。
可撤销并查集不可以路径压缩,所以需要按秩合并,用栈来保存,撤销的时候还原祖先结点。

代码
#pragma region
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <vector>
using namespace std;
typedef long long ll;
#define tr t[root]
#define lson t[root << 1]
#define rson t[root << 1 | 1]
#define rep(i, a, n) for (int i = a; i <= n; ++i)
#define per(i, a, n) for (int i = n; i >= a; --i)
namespace fastIO {
   
   
#define BUF_SIZE 100000
#define OUT_SIZE 100000
//fread->R
bool IOerror = 0;
//inline char nc(){char ch=getchar();if(ch==-1)IOerror=1;return ch;}
inline char nc() {
   
   
    static char buf[BUF_SIZE], *p1 = buf + BUF_SIZE, *pend = buf + BUF_SIZE;
    if (p1 == pend) {
   
   
        p1 = buf;
        pend = buf + fread(buf, 1, BUF_SIZE, stdin);
        if (pend == p1) {
   
   
            IOerror = 1;
            return -1;
        }
    }
    return *p1++;
}
inline bool blank(char ch) {
   
    return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t'; }
template <class T>
inline bool R(T &x) {
   
   
    bool sign = 0;
    char ch = nc();
    x = 0;
    for (; blank(ch); ch = nc())
        ;
    if (IOerror) return false;
    if (ch == '-') sign = 1, ch = nc();
    for (; ch >= '0' && ch <= '9'; ch = nc()) x = x * 10 + ch - '0';
    if (sign) x = -x;
    return true;
}
inline bool R(double &x) {
   
   
    bool sign = 0;
    char ch = nc();
    x = 0;
    for (; blank(ch); ch = nc())
        ;
    if (IOerror) return false;
    if (ch == '-') sign = 1, ch = nc();
    for (; ch >= '0' && ch <= '9'; ch = nc()) x = x * 10 + ch - '0';
    if (ch == '.') {
   
   
        double tmp = 1;
        ch = nc();
        for (; ch >= '0' && ch <= '9'; ch = nc())
            tmp /= 10.0, x += tmp * (ch - '0');
    }
    if (sign)
        x = -x;
    return true;
}
inline bool R(char *s) {
   
   
    char ch = nc();
    for (; blank(ch); ch = nc())
        ;
    if (IOerror)
        return false;
    for (; !blank(ch) && !IOerror; ch = nc())
        *s++ = ch;
    *s = 0;
    return true;
}
inline bool R(char &c) {
   
   
    c = nc();
    if (IOerror) {
   
   
        c = -1;
        return false;
    }
    return true;
}
template <class T, class... U>
bool R(T &h, U &... t) {
   
    return R(h) && R(t...); }
#undef OUT_SIZE
#undef BUF_SIZE
};  // namespace fastIO
using namespace fastIO;
template <class T>
void _W(const T &x) {
   
    cout << x; }
void _W(const int &x) {
   
    printf("%d", x); }
void _W(const int64_t &x) {
   
    printf("%lld", x); }
void _W(const double &x) {
   
    printf("%.16f", x); }
void _W(const char &x) {
   
    putchar(x); }
void _W(const char *x) {
   
    printf("%s", x); }
template <class T, class U>
void _W(const pair<T, U> &x) {
   
    _W(x.F), putchar(' '), _W(x.S); }
template <class T>
void _W(const vector<T> &x) {
   
   
    for (auto i = x.begin(); i != x.end(); _W(*i++))
        if (i != x.cbegin()) putchar(' ');
}
void W() {
   
   }
template <class T, class... U>
void W(const T &head, const U &... tail) {
   
    _W(head), putchar(sizeof...(tail) ? ' ' : '\n'), W(tail...); }
#pragma endregion
const int maxn = 4e5 + 10;
map<int, int> mp[maxn];
int n, m, q, cnt, cnta, cntb;
struct con {
   
   
    int a, b;
};
struct recv {
   
   
    int a, asz, b, bsz;
    int cnt, cnta, cntb;
};
struct node {
   
   
    int l, r;
    vector<con> e;
    vector<recv> rec;
} t[maxn << 2];
int f[maxn], sz[maxn], ans[maxn];
inline void build(int root, int l, int r) {
   
   
    tr.l = l, tr.r = r, tr.e.clear(), tr.rec.clear();
    if (l == r) return;
    int mid = (l + r) >> 1;
    build(root << 1, l, mid);
    build(root << 1 | 1, mid + 1, r);
}
inline void add(int root, int l, int r, con d) {
   
   
    if (l <= tr.l && tr.r <= r) {
   
   
        tr.e.push_back(d);
        return;
    }
    int mid = (tr.l + tr.r) >> 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值