使用 Ollama API 生成 Python 代码的实现过程

简介

本文介绍如何使用 Ollama API 来自动生成 Python 代码。我们将以生成一个计算数字列表总和的函数为例,展示整个实现过程。

实现步骤

1. 环境准备

首先需要导入必要的Python模块:

import requests  # 用于发送HTTP请求
import json     # 用于处理JSON数据
import subprocess  # 用于执行生成的代码

2. 配置API请求

设置 Ollama API 的访问地址和请求参数:

api_url = "http://localhost:11434/api/generate"

data = {
   
   
    "model": "codegemma:2b",  # 使用的AI模型
    "prompt": "编写一个Python函数来计算数字列表的总和。\ndef calculate_sum(numbers):\n# 调用函数并打印结果\n# 示例: print(calculate_sum([1, 2, 3, 4, 5]))",
    "options": {
   
   
        "temperature"
### Ollama Python API 使用方法 Ollama 是一种用于运行和管理机器学习模型的服务,其支持通过 RESTful API 或者命令行工具与之交互。以下是关于如何使用 OllamaPython API 进行操作的相关说明。 #### 安装依赖库 为了方便地调用 Ollama 提供的功能,在 Python 中可以借助 `requests` 库来发送 HTTP 请求至 Ollama 服务端口。如果尚未安装该库,则需先执行以下命令完成安装: ```bash pip install requests ``` #### 基本请求结构 Ollama 默认监听本地地址上的特定端口号 (通常是 `http://localhost:11434`) 来接收来自客户端的各种指令。下面展示了一个简单的例子,演示怎样向 Ollama 发送 POST 请求并获取响应数据: ```python import json import requests url = "http://localhost:11434/api/generate" payload = { "model": "llama2", "prompt": "Once upon a time", } response = requests.post(url, data=json.dumps(payload)) result = response.json() print(result["response"]) ``` 上述代码片段展示了如何构建一个基本的生成任务请求,并解析返回的结果字符串[^5]。 #### 参数详解 - **model**: 指定所使用的预训练模型名称。 - **prompt**: 输入给 AI 模型作为上下文或者起始语句的内容。 - 更多可选参数详见官方文档链接 [Ollama Documentation](https://ollama.ai/docs)。 #### 错误处理机制 当遇到网络连接失败或者其他异常情况时,应该适当地捕获错误以便程序能够稳定运行下去。例如: ```python try: response.raise_for_status() # 如果状态码不是200系列会抛出HTTPError异常 except requests.exceptions.HTTPError as errh: print ("Http Error:",errh) except requests.exceptions.ConnectionError as errc: print ("Error Connecting:",errc) except requests.exceptions.Timeout as errt: print ("Timeout Error:",errt) except requests.exceptions.RequestException as err: print ("OOps: Something Else",err) ``` 以上部分涵盖了大部分常见场景下的需求实现方式以及注意事项。对于更深入的学习建议查阅完整的API手册获得最新最全的信息资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老大白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值