
python
文章平均质量分 67
fast api,kivy
老大白菜
伯乐慧眼世间稀,一朝得遇显精神。
天生骏马待伯乐,骅骝骐骥任评论。
两心相契破前嫌,惜别依依情意真。
江南烟雨渡津口,君问何故向南行。
南山直入碧云端,岁岁行人此路寻。
君去千里我思量。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
FastAPI + Ollama AI 角色参数设定指南
确保 Ollama 服务已启动并运行在。原创 2025-06-07 00:56:15 · 281 阅读 · 0 评论 -
OpenManus + Ollama 本地部署指南
《OpenManus + Ollama 本地部署指南》摘要: 该指南详细介绍了如何本地部署OpenManus和Ollama的完整流程。首先说明了硬件和软件环境的最低配置要求,推荐使用NVIDIA GPU以获得更好性能。安装过程分为五个步骤:安装Ollama核心组件、下载所需语言模型、安装OpenManus框架、配置两者连接以及启动系统。指南还提供了进阶配置建议,包括模型参数优化和外部工具集成,并推荐了高性价比的商业API替代方案。最后包含实战演示案例和常见问题解答,帮助用户构建本地化的AI智能体解决方案,既原创 2025-06-07 00:53:59 · 1045 阅读 · 0 评论 -
基于Python与本地Ollama的智能语音唤醒助手实现
摘要:本项目实现了一个基于Python的本地智能语音助手系统,整合了语音录制、语音识别、大模型对话和语音合成功能。系统采用模块化设计,通过sounddevice录制语音,faster-whisper进行语音识别,与本地Ollama部署的大模型(如yi:34b或llama3-8b)交互,最终通过edge-tts完成语音合成。项目提供了完整的开发环境配置指南,包括Python依赖包、FFmpeg的安装以及Ollama模型的部署方法。核心代码实现了"录音-转文本-对话-语音输出"的工作闭环,并原创 2025-06-02 00:01:43 · 1285 阅读 · 0 评论 -
YOLOv5 环境配置指南
本文详细介绍了YOLOv5目标检测系统的安装配置指南。主要内容包括:1) 系统要求(Windows/Linux/MacOS平台,推荐NVIDIA GPU);2) 完整安装步骤(Conda环境创建、NVIDIA驱动和CUDA 11.8安装、PyTorch配置、YOLOv5安装);3) 验证脚本(CUDA/cuDNN测试、YOLOv5 GPU测试、cuDNN安装脚本);4) 常见问题解决方案(CUDA错误、内存不足等)。文档提供了从环境搭建到验证测试的完整流程,并包含官方资源链接,适用于需要部署YOLOv5深度原创 2025-06-01 19:39:01 · 1067 阅读 · 0 评论 -
构建多模型协同的Ollama智能对话系统
本文介绍了一种基于多模型协同的智能对话系统架构,整合情感分析(Qwen-7B)、危机评估(MindPal)和心理对话(PsychologistV2)三个Ollama模型。系统采用模块化设计,通过瀑布式处理流程实现:1)情感状态识别,2)条件触发危机评估,3)上下文感知的智能回复生成。该架构具有端点独立部署、统一接口封装和按需模型调用的特点,适用于心理咨询、客服增强等场景。文中提供了完整的Python实现代码,展示了从情绪分析到智能回复的完整处理流程,并探讨了未来在记忆增强、性能优化等方面的发展方向。原创 2025-05-31 11:34:33 · 831 阅读 · 0 评论 -
# Python 语音助手本地的ollama实现
本项目是一个基于Python的本地智能语音助手,整合了语音录制、识别、AI对话和语音合成功能。系统采用模块化设计:通过sounddevice录制语音,faster-whisper进行语音识别,连接Ollama本地大模型(支持yi/llama3等)进行文本对话,最后使用edge-tts实现语音合成输出。环境配置需安装FFmpeg等依赖,并部署Ollama服务。核心流程为"语音输入→识别→AI处理→语音输出",提供完整代码实现各功能模块,支持Windows/Linux/macOS系统运行,形原创 2025-05-28 23:47:07 · 1182 阅读 · 0 评论 -
# 使用 Micromamba 安装 vLLM 并运行最小模型(facebook/opt-125m)
本文介绍了在Ubuntu系统上使用vLLM框架进行大模型部署的完整流程。内容包括:通过Micromamba创建Python 3.10环境、配置国内镜像源安装vLLM、设置HuggingFace模型缓存目录、权限管理及验证安装的方法,并提供了最小运行示例和Gradio接口实现。重点讲解了环境变量配置、模型下载加速等实用技巧,最后展示了成功运行的输出示例和推荐的目录结构。整套方案特别适合内网服务器部署,可帮助开发者快速上手vLLM框架进行大模型推理测试。原创 2025-05-28 11:16:17 · 501 阅读 · 0 评论 -
FastMCP:为大语言模型构建强大的上下文和工具服务
FastMCP是为大语言模型(LLM)设计的标准化交互协议Model Context Protocol(MCP)的Python实现。它提供高效开发体验,简化了创建MCP服务器和客户端的过程。FastMCP核心功能包括:1)构建MCP服务器基础架构;2)通过@mcp.tool()装饰器创建LLM可调用的工具函数;3)使用@mcp.resource()提供上下文数据;4)创建可重用提示模板。该工具支持同步和异步操作,允许开发者快速构建LLM与外部系统的标准化交互接口。FastMCP 2.0版本新增了客户端功能、原创 2025-05-24 19:54:02 · 1051 阅读 · 0 评论 -
双均线量化交易策略指南
本文介绍了一种基于双均线的股票交易策略,使用5日和20日简单移动平均线(SMA)生成交易信号。当5日线高于20日线时产生买入信号,反之则产生卖出信号。文章详细展示了Python实现模块,包括数据获取、策略计算和回测引擎,并通过可视化分析展示了策略的交易信号。此外,文章还提供了策略优化建议,如参数调优组合和改进方向,并给出了使用示例。最后,强调了实际交易中需注意的因素,如开盘价跳空、参数优化、过拟合风险和策略再平衡等。原创 2025-05-23 15:37:31 · 334 阅读 · 0 评论 -
情感分析模型微调指南
本文详细介绍了在Ollama环境中进行模型微调的完整流程。首先,选择合适的预训练模型(如GPT-3、BERT、LLaMA)是微调的基础,需根据任务类型、模型大小和社区支持等因素进行选择。其次,准备高质量的数据集,包括数据收集、清洗、标注和格式化。接着,设置微调参数如学习率、批量大小和训练轮数,并通过命令行执行微调。微调完成后,使用验证集或测试集评估模型性能,常用指标包括准确率、F1分数和损失值。最后,将微调后的模型部署到生产环境,考虑性能、可扩展性和监控等因素。通过本文的指导,用户可以快速掌握模型微调的基本原创 2025-05-10 12:12:29 · 475 阅读 · 0 评论 -
MCP(Model Context Protocol)是专为LLM(大语言模型)应用设计的标准化协议
MCP(Model Context Protocol)是为大语言模型(LLM)应用设计的标准化协议,旨在通过安全可控的方式向AI应用暴露数据和功能。MCP提供标准化的上下文管理、安全的功能调用接口、跨平台的数据交互协议和可审计的操作日志记录。其核心原语包括Tool(工具)、Resource(资源)和Prompt(提示模板),分别用于执行函数、提供只读数据和标准化对话流程。MCP支持标准输入输出(stdio)和基于HTTP的服务器推送事件(SSE)两种通信方式,适用于本地和分布式部署。开发指南推荐使用uv进行原创 2025-05-09 17:41:04 · 1146 阅读 · 0 评论 -
FastAPI WebSocket 聊天应用详细教程
这是一个基于 FastAPI 和 WebSocket 实现的实时聊天应用,支持一对一聊天、离线消息存储等功能。详细代码实现1. 后端实现 (main.py)2. 前端实现 (templates/chat.html)功能特点用户管理消息功能界面特性技术特性启动服务器访问应用打开浏览器访问 输入用户名登录开始聊天使用流程登录发送消息接收消息退出原创 2025-04-22 21:01:42 · 941 阅读 · 0 评论 -
照片中救援司机是否穿着马甲
要判断照片中的人是否穿着马甲(反光背心/安全背心),这是一个计算机视觉中的目标检测和服装识别问题。原创 2025-04-15 17:20:23 · 294 阅读 · 0 评论 -
大学生心理咨询平台的模型组合方案 ollama
C[危机检测 8-bit] -->|按需加载| D[3GB显存]A[主模型 4-bit] -->|常驻| B[6GB显存]"⚠️ 你的安全很重要,请立即联系..."E[剩余显存] --> F[系统缓存]"我最近压力大到想死"64GB内存分配建议。原创 2025-04-15 16:31:18 · 730 阅读 · 0 评论 -
FastAPI-Cache2: 高效Python缓存库
创建自定义编码器# 自定义编码逻辑# 自定义解码逻辑return {"data": "使用自定义编码器"}func,*args,**kwargs,):# 自定义缓存键生成逻辑。原创 2025-04-04 08:59:59 · 721 阅读 · 0 评论 -
Python FastAPI + Celery + RabbitMQ 分布式图片水印处理系统
1. 通过 FastAPI 接口上传图片并异步处理水印2. 使用 Celery 处理异步任务队列3. 使用 RabbitMQ 作为消息代理4. 支持定时任务: - 每小时自动处理待处理图片 - 每天清理一周前的旧图片5. 支持任务状态查询6. 支持查看计划任务列表原创 2025-04-01 23:00:22 · 512 阅读 · 0 评论 -
Python 图片水印处理工具
【代码】Python 图片水印处理工具。原创 2025-04-01 22:54:45 · 326 阅读 · 0 评论 -
python 实现 Celery 任务队列系统
这是一个基于 Celery 和 Redis 的分布式任务队列系统,用于处理异步任务和定时任务。原创 2025-04-01 22:46:05 · 1024 阅读 · 0 评论 -
python 开发的 六爻排盘程序
这是一个基于Python和Tkinter开发的六爻排盘程序,用于模拟传统的六爻起卦过程。程序具有图形界面,可以输入占问事项和时间,自动生成卦象并显示结果。原创 2025-04-01 06:47:55 · 496 阅读 · 0 评论 -
python tkinter 开发蓍草占卜系统
蓍草占卜是中国传统的占卜方法,用于演算六十四卦。本系统通过现代编程技术,将传统的蓍草占卜方法数字化,提供一个准确、便捷的占卜工具。蓍草占卜,作为中国古代的一种传统占卜方法,承载着深厚的文化底蕴和独特的智慧。它利用蓍草这一神奇的植物作为媒介,通过特定的仪式和程序,连接天地人三才,洞察未来的吉凶祸福。无量子将详细介绍蓍草占卜的方法及解卦过程,带您领略这一古老占卜术的魅力。原创 2025-03-26 00:15:47 · 1017 阅读 · 0 评论 -
tkinter日历程序的设计
这是一个使用 Python tkinter 库开发的图形界面日历程序。它能够显示当前月份的日历,并允许用户通过按钮切换查看不同的月份。原创 2025-03-25 22:33:41 · 1090 阅读 · 0 评论 -
lunar是一款无第三方依赖的公历 python调用
unar是一款无第三方依赖的公历 python调用。原创 2025-03-20 23:35:25 · 837 阅读 · 0 评论 -
Python八字排盘系统实现分析
本文将详细分析一个Python实现的排盘系统(paipan.py)。这个系统实现了包括天干地支、五行、农历转换等在内的完整排盘功能。通过分析其源码,我们可以深入理解中国传统历法的计算原理和实现方法。原创 2025-03-20 23:32:06 · 1182 阅读 · 0 评论 -
mysql 权限控制系统数据库设计方案
mysql 权限控制系统数据库设计方案。原创 2025-03-18 16:47:16 · 530 阅读 · 0 评论 -
python 打印阳历对应的日农历时间
python 打印阳历对应的日农历时间。原创 2025-03-16 20:35:02 · 443 阅读 · 0 评论 -
Python实现万年历
本程序使用Python实现了万年历功能,能够显示指定年份和月份的日历,并同时显示对应的农历日期。原创 2025-03-16 16:52:40 · 439 阅读 · 0 评论 -
Python 实现的采集诸葛灵签
这是一个基于 Python 开发的诸葛灵签数据采集和展示项目。通过爬虫技术获取诸葛神签的签文和解签内容,并提供数据存储和查询功能。原创 2025-03-14 23:43:24 · 1303 阅读 · 0 评论 -
python 易经六十四卦 Unicode 字符生成器
"乾(乾卦)- Qián", "坤(坤卦)- Kūn",# ... 其他卦名 ..."""生成《易经》六十四卦的 Unicode 字符列表(范围 U+4DC0 到 U+4DFF)"""原创 2025-03-14 18:52:24 · 675 阅读 · 0 评论 -
DeepSeek API 客户端使用文档
deep.py是一个用于与 DeepSeek API 交互的 Python 客户端封装。它提供了简单易用的接口,支持对话历史管理、日志记录等功能,使得与 DeepSeek API 的交互更加便捷和可靠。原创 2025-03-11 22:37:23 · 1763 阅读 · 0 评论 -
FastAPI 分页模块实现详解
本文详细介绍了一个基于 FastAPI 框架的通用分页处理模块的实现。该模块提供了标准的分页参数处理、数据切片和响应格式化功能,可以轻松地集成到任何 FastAPI 项目中。这个分页模块提供了一个完整的解决方案,可以轻松处理 FastAPI 应用中的分页需求。代码的可读性和可维护性类型安全和参数验证标准化的响应格式良好的错误处理通过使用这个模块,可以大大简化 API 开发中的分页实现,提高开发效率和代码质量。原创 2025-03-11 22:24:32 · 537 阅读 · 0 评论 -
掌握Python项目打包:从入门到精通 | 主流工具对比与最佳实践
setuptools:最传统和稳定的选择Poetry:现代化的完整解决方案uv:注重性能和效率的新选择根据项目规模、团队需求和性能要求,选择最适合的打包工具。无论选择哪种工具,都要注意遵循Python打包的最佳实践,确保包的质量和可维护性。原创 2025-03-09 17:09:01 · 722 阅读 · 0 评论 -
虚拟环境:你肯定用过,但不一定了解 | Python | venv | pipenv | poetry
对于个人学习和小项目,venv足够使用对于团队协作项目,推荐使用pipenv或poetry如果项目需要打包发布,poetry是最佳选择无论选择哪种工具,重要的是要理解虚拟环境的核心概念,并在实践中保持一致的使用方式。这样才能充分发挥虚拟环境的优势,提高Python项目的开发效率和质量。开源的包管理和环境管理系统特别适合科学计算和数据科学项目可以管理Python和非Python的依赖支持跨平台使用高性能的Python包安装器和虚拟环境管理工具使用Rust编写,速度快,资源占用少。原创 2025-03-09 13:08:23 · 883 阅读 · 0 评论 -
Python中的*args和**kwargs:灵活参数处理的完全指南
args和**kwargs*args允许函数接收任意数量的位置参数,在函数内部表现为元组**kwargs允许函数接收任意数量的关键字参数,在函数内部表现为字典它们常用于装饰器、参数转发、动态创建对象等场景使用时需要注意参数顺序和可变默认参数的陷阱通过合理使用*args和**kwargs,你可以编写出更加通用、灵活且易于扩展的Python代码。无论是开发库、框架还是应用程序,这两个特性都能帮助你应对各种复杂的参数处理需求。现在,开始在你的Python项目中灵活运用*args和**kwargs。原创 2025-03-09 11:35:04 · 1132 阅读 · 0 评论 -
Python装饰器:从入门到精通 - 全面掌握Python类和装饰器的终极指南
想要成为Python高手?掌握装饰器是必经之路!本文将带你深入理解Python装饰器的精髓,从基础概念到高级应用,全方位提升你的Python编程技能。装饰器(Decorator)是Python中一个极其强大的特性,从Python 2.4版本开始引入,并在后续版本中不断完善和增强。它让我们能够优雅地修改或扩展函数和类的行为,而无需改变其源代码。2.2 内置装饰器Python提供了几个强大的内置装饰器:类装饰器是Python面向对象编程中的重要工具,它们能够改变类方法的行为和访问方式。以下是类中常用装饰器的原创 2025-03-09 11:21:50 · 1062 阅读 · 0 评论 -
Python条件语句:if-elif vs match 详解
if-elif 适用于简单的条件判断需要复杂逻辑运算向后兼容性要求match 适用于模式匹配结构化数据处理多分支且模式清晰的情况选择建议根据实际需求选择考虑代码可读性考虑维护成本。原创 2025-03-08 19:26:54 · 448 阅读 · 0 评论 -
Python包结构与 `__init__.py` 详解
标识Python包初始化包的状态提供包级别的变量和函数控制导入的内容简化包的使用方式正确使用可以使包的结构更清晰、使用更方便、维护更容易。原创 2025-03-08 19:20:40 · 923 阅读 · 0 评论 -
python 调用AKShare股市数据分析:一站式获取A股各类板块数据
AKShare是一个开源的Python金融数据接口库,本教程将展示如何使用AKShare获取A股市场的各类板块数据,包括行业板块、概念板块、风格板块等。原创 2025-03-08 12:15:00 · 4544 阅读 · 0 评论 -
Python股市数据分析:使用Tushare轻松获取各类板块股票清单
本教程将展示如何使用Tushare Pro获取不同类型的板块股票数据,包括行业板块、概念板块和地域板块。通过这些数据,你可以进行更深入的市场分析和投资研究。原创 2025-03-08 10:45:00 · 1906 阅读 · 0 评论 -
Python股票实时行情数据获取库介绍
Python股票实时行情数据获取库介绍。原创 2025-03-07 22:07:29 · 2067 阅读 · 0 评论 -
在CentOS系统上安装Conda的详细指南
Conda 是一个开源的包管理系统和环境管理系统,广泛应用于数据科学和机器学习领域。本文将详细介绍如何在 CentOS 系统上安装 Conda,帮助您快速搭建开发环境。Conda 不仅是一个包管理器,更是现代 Python 开发的基础设施。掌握其高级用法,将极大提升您的开发效率和项目管理能力。### 使用方法1. 将上述内容复制到一个文本文件中。2. 将文件保存为 `conda_install_guide.md`。原创 2025-03-07 12:32:55 · 1960 阅读 · 0 评论