
机器学习
文章平均质量分 69
sklearn,工作当时还要用到的其它框架。
老大白菜
伯乐慧眼世间稀,一朝得遇显精神。
天生骏马待伯乐,骅骝骐骥任评论。
两心相契破前嫌,惜别依依情意真。
江南烟雨渡津口,君问何故向南行。
南山直入碧云端,岁岁行人此路寻。
君去千里我思量。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OpenManus + Ollama 本地部署指南
《OpenManus + Ollama 本地部署指南》摘要: 该指南详细介绍了如何本地部署OpenManus和Ollama的完整流程。首先说明了硬件和软件环境的最低配置要求,推荐使用NVIDIA GPU以获得更好性能。安装过程分为五个步骤:安装Ollama核心组件、下载所需语言模型、安装OpenManus框架、配置两者连接以及启动系统。指南还提供了进阶配置建议,包括模型参数优化和外部工具集成,并推荐了高性价比的商业API替代方案。最后包含实战演示案例和常见问题解答,帮助用户构建本地化的AI智能体解决方案,既原创 2025-06-07 00:53:59 · 1045 阅读 · 0 评论 -
LabelImg: 开源图像标注工具指南
摘要:LabelImg是一款开源的图像标注工具,支持Windows、Linux和macOS平台。它专为目标检测任务设计,提供PASCAL VOC和YOLO格式的标注输出。安装简单,可通过pip或源码安装,具有快捷键操作、中文界面等特性。使用指南包括打开图片目录、设置保存路径、标注步骤和技巧。支持两种主要标注格式:YOLO格式(相对坐标)和PASCAL VOC格式(XML)。最佳实践建议保持数据组织规范、标注一致性和质量控制。该工具适合计算机视觉项目的数据准备工作,通过熟练使用可显著提升标注效率。原创 2025-06-02 00:17:11 · 1084 阅读 · 0 评论 -
YOLOv5 环境配置指南
本文详细介绍了YOLOv5目标检测系统的安装配置指南。主要内容包括:1) 系统要求(Windows/Linux/MacOS平台,推荐NVIDIA GPU);2) 完整安装步骤(Conda环境创建、NVIDIA驱动和CUDA 11.8安装、PyTorch配置、YOLOv5安装);3) 验证脚本(CUDA/cuDNN测试、YOLOv5 GPU测试、cuDNN安装脚本);4) 常见问题解决方案(CUDA错误、内存不足等)。文档提供了从环境搭建到验证测试的完整流程,并包含官方资源链接,适用于需要部署YOLOv5深度原创 2025-06-01 19:39:01 · 1067 阅读 · 0 评论 -
构建多模型协同的Ollama智能对话系统
本文介绍了一种基于多模型协同的智能对话系统架构,整合情感分析(Qwen-7B)、危机评估(MindPal)和心理对话(PsychologistV2)三个Ollama模型。系统采用模块化设计,通过瀑布式处理流程实现:1)情感状态识别,2)条件触发危机评估,3)上下文感知的智能回复生成。该架构具有端点独立部署、统一接口封装和按需模型调用的特点,适用于心理咨询、客服增强等场景。文中提供了完整的Python实现代码,展示了从情绪分析到智能回复的完整处理流程,并探讨了未来在记忆增强、性能优化等方面的发展方向。原创 2025-05-31 11:34:33 · 831 阅读 · 0 评论 -
使用Shell脚本实现多GPU上的Ollama模型自动部署
本文介绍了一个自动化Shell脚本,用于在多个GPU上并行部署和管理Ollama语言模型。该脚本支持三个独立模型部署(情感分析、主模型和危机处理),每个模型分配专用GPU、端口和显存资源(8-10GB)。功能包括自动服务管理、日志记录和模型预热,测试结果显示并行部署后响应时间从4-5分钟缩短至10秒,实现了30倍的性能提升。脚本提供完整的监控命令和API测试方法,解决了单GPU资源竞争问题,显著提高了大规模AI应用的部署效率和系统性能。原创 2025-05-31 09:30:44 · 476 阅读 · 0 评论 -
# Python 语音助手本地的ollama实现
本项目是一个基于Python的本地智能语音助手,整合了语音录制、识别、AI对话和语音合成功能。系统采用模块化设计:通过sounddevice录制语音,faster-whisper进行语音识别,连接Ollama本地大模型(支持yi/llama3等)进行文本对话,最后使用edge-tts实现语音合成输出。环境配置需安装FFmpeg等依赖,并部署Ollama服务。核心流程为"语音输入→识别→AI处理→语音输出",提供完整代码实现各功能模块,支持Windows/Linux/macOS系统运行,形原创 2025-05-28 23:47:07 · 1182 阅读 · 0 评论 -
# 使用 Micromamba 安装 vLLM 并运行最小模型(facebook/opt-125m)
本文介绍了在Ubuntu系统上使用vLLM框架进行大模型部署的完整流程。内容包括:通过Micromamba创建Python 3.10环境、配置国内镜像源安装vLLM、设置HuggingFace模型缓存目录、权限管理及验证安装的方法,并提供了最小运行示例和Gradio接口实现。重点讲解了环境变量配置、模型下载加速等实用技巧,最后展示了成功运行的输出示例和推荐的目录结构。整套方案特别适合内网服务器部署,可帮助开发者快速上手vLLM框架进行大模型推理测试。原创 2025-05-28 11:16:17 · 501 阅读 · 0 评论 -
照片中救援司机是否穿着马甲
要判断照片中的人是否穿着马甲(反光背心/安全背心),这是一个计算机视觉中的目标检测和服装识别问题。原创 2025-04-15 17:20:23 · 294 阅读 · 0 评论 -
qlib的 双移动平均线交易策略
QLib(Quantitative Investment Library)是一个强大的开源量化投资研究平台,为金融量化分析提供全面解决方案。原创 2025-02-22 11:19:46 · 1268 阅读 · 0 评论 -
fastapi 多语言国际化实现指南
调用百度翻译 API 进行文本翻译支持多种语言互相转换内置错误处理和安全机制简体中文 ↔ 繁体中文互转中文文本转拼音多种拼音样式支持从数据库获取原始翻译文本使用百度翻译 API 自动生成翻译创建.po格式的本地化文件支持全量或指定语言翻译。原创 2025-02-19 18:55:14 · 1078 阅读 · 0 评论 -
Streamlit的DeepSeek对话应用,提供简单、直观的AI交互体验
一个基于Streamlit的DeepSeek对话应用,提供简单、直观的AI交互体验。原创 2025-02-16 04:15:00 · 892 阅读 · 0 评论 -
Streamlit与Qlib:量化投资策略可视化实战
在量化投资领域,数据可视化是理解和展示投资策略的关键。本文将详细介绍如何使用Streamlit和Qlib构建一个交互式的量化投资策略可视化应用。原创 2025-02-15 22:44:39 · 491 阅读 · 0 评论 -
Qlib量化投资框架:Windows环境安装与策略实践
本策略基于市值选股,选择市值最小的股票进行投资,以捕捉可能的高成长性和低估值机会。原创 2025-02-15 22:07:05 · 1123 阅读 · 0 评论 -
python dash3股票的模拟3
Input(‘interval-component’, ‘n_intervals’)]) 进行刷新数据,它的意思是:“当 ‘interval-component’ 的 n_intervals 属性发生变化时,执行这个回调函数,并将更新后的图表作为输出,更新 ‘Stock-graph’ 组件的 ‘figure’ 属性。这些组件用于定义应用的布局。dash_core_components:包含用于创建核心组件(如图表、表格、输入框等)的 Dash 组件。dash:Dash 主模块,用于创建 Dash 应用。原创 2023-12-24 00:26:29 · 503 阅读 · 0 评论 -
Ubuntu 手动安装 Open WebUI 完整指南
OpenWebUI遵循开源许可证。请查看官方仓库了解详细信息。原创 2025-01-18 14:41:59 · 5575 阅读 · 1 评论 -
构建本地知识库:基于 LangChain 和 Ollama 的 RAG 实现教程
在这个教程中,我们将学习如何构建一个本地运行的知识库系统,它能够让用户上传 PDF 或 TXT 文档,并通过自然语言与文档内容进行交互。这个系统使用了 RAG(检索增强生成)技术,结合了 LangChain、Ollama 和 Streamlit 等现代工具,实现了一个完整的本地知识库解决方案。原创 2025-01-15 12:27:55 · 1978 阅读 · 0 评论 -
快速构建AI应用:FastAPI与Redis集成实例解析
FastAPI 是一个基于 Python 3.7 及以上版本的现代 Web 框架,它以高度可测试性和快速开发为目标。FastAPI 支持多种数据类型和格式,并且内置了丰富的功能,如自动化的文档生成、路径操作等。使用 FastAPI 开发 API 应用程序可以显著提高开发效率。Redis 是一个开源的内存数据存储系统,也可以被看作是一个分布式内存数据库。它支持多种数据结构,例如字符串(string)、哈希(hash)、列表(list)和集合(set)。原创 2024-12-31 19:47:14 · 1010 阅读 · 0 评论 -
掌握机器学习与MySQL集成实战Ruby和JavaScript辅助Redis缓存策略
定义:简单来说,机器学习是一种让计算机程序在不被显式编程的情况下学会执行任务的技术。通过分析数据、识别模式并做出决策或预测。应用领域简述:广泛应用于推荐系统、自然语言处理、图像识别等领域。结构:关系型数据库管理系统(RDBMS),使用SQL语言进行数据操作。管理工具概述:包括phpMyAdmin、MySQL Workbench等,提供图形化界面来管理和维护数据库。特点:分布式内存数据库,支持多种数据类型和数据结构。应用场景简介:常用于缓存、消息队列及分布式锁等场景。动态语言特性。原创 2024-12-31 19:43:35 · 1348 阅读 · 0 评论 -
RAG实战:构建基于本地大模型的智能问答系统
检索(Retrieval)从知识库检索相关文档利用向量数据库进行高效存储和检索通过语义相似度找到最相关内容增强(Augmentation)将检索内容注入提示模板为模型提供准确的上下文确保回答基于可靠信息生成(Generation)利用大模型生成回答保证回答的准确性和可追溯性本文介绍的RAG问答系统结合了最新的AI技术,实现了一个既智能又可靠的问答系统。通过使用本地大模型和RAG技术,我们可以构建出适合特定领域的智能问答应用,为用户提供准确、可靠的答案。原创 2024-12-25 23:03:04 · 1261 阅读 · 0 评论 -
Windows下安装配置Xinference指南
Xinference 是一个强大且可扩展的本地推理服务器,具有以下特点:支持多种类型模型的部署和服务(LLM、嵌入、图像等)提供统一的 RESTful API 和 Python SDK支持模型量化和优化可以在本地运行开源模型支持多种推理后端(PyTorch、ONNX等)原创 2024-12-25 10:58:06 · 4245 阅读 · 0 评论 -
PyTorch实现的猫狗图像分类项
这是一个使用PyTorch实现的猫狗图像分类项目。原创 2024-12-17 13:52:40 · 636 阅读 · 0 评论 -
基于GIT模型的智能图像描述生成器
基于GIT模型的智能图像描述生成器。原创 2024-12-15 18:45:27 · 350 阅读 · 0 评论 -
智能写作新纪元:AI辅助百万字小说创作完全手册
完善的框架设计自动化的写作流程严格的质量控制科学的内容管理建议先小规模测试,确保系统稳定后再进行大规模创作。同时,要注意保存和管理好每一章节的内容,定期进行审查和修改。原创 2024-12-11 02:16:08 · 2195 阅读 · 0 评论 -
Ollama模型在中文小说创作中的应用指南
选择合适的模型是AI辅助创作的关键一步。建议用户根据自己的具体需求和硬件条件,选择最适合的模型进行创作实践。同时,通过不断调整和优化提示词,可以获得更好的创作效果。原创 2024-12-11 02:06:33 · 3286 阅读 · 0 评论 -
使用 Ollama API 生成 Python 代码的实现过程
本文介绍如何使用 Ollama API 来自动生成 Python 代码。我们将以生成一个计算数字列表总和的函数为例,展示整个实现过程。原创 2024-12-11 01:42:55 · 894 阅读 · 0 评论 -
Ollama Python Library 使用指南
Ollama Python库提供了一种最简单的方式将Python 3.8+项目与Ollama集成。这个库支持同步和异步操作,可以轻松实现与Ollama模型的交互。',},])原创 2024-12-11 01:19:29 · 1172 阅读 · 0 评论 -
Python 实现 Ollama 提示词生成与优化系统
这个实现可以作为一个基础框架,根据具体需求进行扩展和定制。原创 2024-12-10 21:45:15 · 1750 阅读 · 0 评论 -
Electron + React + Monaco Editor + AI 本地代码编辑器实现分析
前端框架:React编辑器引擎桌面框架:ElectronAI 模型Ollama(本地部署)Qwen(通义千问)灵活性支持多种 AI 模型适应不同开发场景实用性本地化部署低延迟响应离线使用扩展性模块化设计易于集成新模型可定制化配置这种设计使得编辑器能够满足不同用户的需求,同时保持了良好的性能和用户体验。原创 2024-12-10 21:33:27 · 1090 阅读 · 0 评论 -
Streamlit ollama 开发一个股票助手
获取当前时间并格式化logtxtbox.caption(current_time) # 更新显示的时间else:函数每分钟处理一次股票更新,更新当前时间并计算新的高低价和动能。这个 AI 股票助手应用程序通过实时更新股票数据并提供市场见解,帮助用户更好地理解市场动态。通过使用 Streamlit,Pandas 和其他库,您可以轻松构建一个功能强大的股票分析工具。原创 2024-11-30 12:46:43 · 1594 阅读 · 0 评论 -
使用ollama ,Streamlit构建图像上传和聊天模型应用
如何使用Streamlit构建一个简单的应用程序,该应用程序允许用户上传图像并与聊天模型进行交互。我们将逐步分析代码的各个部分,并解释其功能。原创 2024-11-30 10:55:58 · 1435 阅读 · 0 评论 -
Vanna使用ollama分析本地MySQL数据库 加入redis保存训练记录
这是一个基于 Ollama 和 Redis 的智能 SQL 问答系统,可以将自然语言问题转换为 SQL 查询语句。基于 LLM (Large Language Model) 的自然语言转 SQL支持训练数据的持久化存储提供 REST API 接口支持数据可视化生成该系统通过结合 LLM 和传统数据库技术,实现了一个灵活的自然语言到 SQL 的转换系统。其模块化设计和可扩展性使其适合在实际业务场景中使用和扩展。模块化设计可扩展架构完整的训练流程持久化存储支持性能优化。原创 2024-11-17 23:00:47 · 2337 阅读 · 0 评论 -
比较二张图片相似度包括人脸识别,接口用fastapi
比较二张图片相似度包括人脸识别,接口用fastapi。原创 2024-05-21 18:47:48 · 652 阅读 · 0 评论 -
dash 中的模式匹配回调函数Pattern-Matching Callbacks 8
此示例呈现任意数量的 dcc. Dropdown 元素,并且只要任何 dcc. Dropdown 元素发生更改,就会触发回调。尝试添加几个下拉菜单并选择它们的值,以查看应用程序如何更新。模式匹配回调选择器 MATCH、ALL 和 ALLSMALLER 允许您编写可以响应或更新任意或动态数量组件的回调函数。原创 2023-12-27 12:33:17 · 940 阅读 · 0 评论 -
sklearn 中皮尔森相关性。
【代码】sklearn 中皮尔森相关性。原创 2023-12-27 11:32:43 · 1266 阅读 · 0 评论 -
sklearn 中matplotlib编制图表
kind 参数在 pandas 的 plot 方法中确实有多种可选值,它决定了图形的类型。“kde”: Kernel Density Estimation 图(核密度估计图)“scatter”: 散点图。“barh”: 水平条形图。“line”: 折线图。“hist”: 直方图。“area”: 面积图。“box”: 箱线图。原创 2023-12-27 09:52:36 · 664 阅读 · 0 评论 -
sklearn学习之用matplotlib绘制鸢尾花(Iris)数据集的两个特征:花萼的长度和宽度
sklearn Iris 数据集是机器学习和数据科学中经常使用的一个标准数据集,用于分类任务。原创 2023-12-27 09:31:27 · 1138 阅读 · 0 评论 -
sklearn学习的一个例子用pycharm jupyter
运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter.这里我们用pycharm进行项目创建。创建一个jupyter的文件。或直接用andcoda。原创 2023-12-27 08:24:54 · 1131 阅读 · 0 评论 -
python 用YOLOv4模型识别物体
【代码】python 用YOLOv4模型识别物体。原创 2023-12-26 00:16:41 · 872 阅读 · 0 评论 -
python 通过opencv及face_recognition识别人脸
使用Python的cv2库和face_recognition库来进行人脸检测和比对的。原创 2023-12-26 00:15:57 · 2933 阅读 · 1 评论 -
sklearn所需要的知识点
SciPy的不同子模块对应不同的应用,如插值、积分、优化、图像处理、统计、特殊函数等。机器学习基本概念和算法:了解机器学习的基本概念,如监督学习、无监督学习、半监督学习、强化学习等,以及各种常见的机器学习算法,如线性回归、逻辑回归、决策树、随机森林、支持向量机(SVM)、K均值聚类等。sklearn是用Python编写的,因此你需要具备基本的Python编程能力,包括了解数据类型(如列表、字典、元组等)、控制流(如if语句、for循环等)以及函数定义和调用等。安装完成后,就可以进行使用了。原创 2023-12-24 22:25:21 · 1197 阅读 · 0 评论