keras求两向量间的余弦值

博客介绍了使用Keras求两向量间余弦值的方法,需自定义一个layer。具体步骤为计算两个向量的L2范数和点乘,再将点乘结果除以L2范数乘积,同时要保证分母不为0,还给出了相关参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

keras求两向量间的余弦值

具体要自己定义一个layer,余弦相似度计算公式如下:
步骤:

  1. 计算两个向量L2范数,计算两个向量的点乘
  2. 点乘结果除以L2范数乘积,分母不能为0

在这里插入图片描述

import keras.backend as K
from keras.layers import Lambda
import numpy as np
import keras
class CosineLayer():
    def __call__(self, x1, x2):
        def _cosine(x):
            dot1 = K.batch_dot(x[0], x[1], axes=1)
            dot2 = K.batch_dot(x[0], x[0], axes=1)
            dot3 = K.batch_dot(x[1], x[1], axes=1)
            max_ = K.maximum(K.sqrt(dot2 * dot3), K.epsilon())
            return dot1 / max_

        output_shape = (1,)
        value = Lambda(
            _cosine,
            output_shape=output_shape)([x1, x2])
        return value

# x1,x2:(batch_size, dim)
x1 = np.random.randint(1, 100, 20)
# x2 = np.random.randint(1, 100, 20)
x2 = np.random.randint(1, 100, 20)
# 一定要是二维
x1 = x1.reshape(4, 5)
x2 = x2.reshape(4, 5)
x1 = K.constant(x1)
x2 = K.constant(x2)
# 转化为keras里的tensor
x = Lambda(lambda x:x)(x1)
y = Lambda(lambda x:x)(x2)
cosine = CosineLayer()
similarity = cosine(x, y)
# tensor输出查看不到具体值
print(similarity)
# model = CosineLayer(x,y)

参考: 使用Keras计算余弦相似度(Cosine Similarity)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值