本文仅代表笔者个人观点,与 SAP 公司无关!
传统 ABAP On-Premise 环境(如本地部署的 ECC 或 S/4HANA)在架构上与现代云端AI平台有显著差异。
首先,运行环境不同:本地 ABAP 系统运行于 SAP NetWeaver ABAP 服务器,主要使用CPU进行事务处理和业务计算,并紧密耦合企业自有的数据中心或专有硬件。而现代AI计算通常依赖分布式云基础设施,使用容器化技术并往往需要GPU加速来运行深度学习模型。
其次,扩展能力不同:ABAP On-Premise 偏向于稳定的业务逻辑执行,扩展新功能通常通过升级补丁或额外插件,很难直接嵌入诸如 TensorFlow/PyTorch 等AI库。相比之下,SAP BTP 上的 AI Core 基于 Kubernetes/Docker,可以灵活部署各种机器学习镜像或大模型容器,实现弹性伸缩和快速迭代。
第三,集成方式不同:本地 ABAP 通常通过 RFC、IDoc 等方式与外围系统集成,缺乏对REST API或OAuth等现代云接口的原生支持(需额外开发)。而 Joule 所依赖的AI服务都是通过REST API/HTTP调用的云服务,天然需要现代协议支持。本地 ABAP 环境虽然可以通过 HTTP 调用外部服务,但需要开发人员手工处理 HTTP 客户端、JSON 解析和安全认证等,集成成本高且限制多(见下文代码示例)。
反之,在 ABAP Cloud 环境中,这些云集成已成为开发模型的一部分,有更完善的工具支持。例如,ABAP Cloud 提供了