23、Python算法优化与多线程编程指南

Python算法优化与多线程编程指南

1. Big - O表示法与算法复杂度

Big - O表示法是提升算法性能的有效方式,但使用时需注意:
- 其计算存在近似性。
- 仅对不依赖外部资源的纯Python代码准确。

当无法计算算法复杂度时,例如算法包含难以分析的C代码,可使用 timeit profile 装饰器,并提供足够的输入数据来测试算法效率。练习Big - O可访问: http://pages.cs.wisc.edu/~hasti/cs367 - common/notes/COMPLEXITY.html#bigO

2. 简化算法复杂度

为降低算法复杂度,数据存储方式至关重要,需谨慎选择数据结构。

2.1 列表搜索

若要为列表实例提供搜索算法,对排序后的列表进行二分搜索可将复杂度从O(n)降至O(log n)。可使用 bisect 模块,示例代码如下:

import bisect

def find(seq, el):
    pos = bisect.bisect(seq, el)
    if pos == 0 or (pos == len(seq) and seq[-1] != el):
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值