Python算法优化与多线程编程指南
1. Big - O表示法与算法复杂度
Big - O表示法是提升算法性能的有效方式,但使用时需注意:
- 其计算存在近似性。
- 仅对不依赖外部资源的纯Python代码准确。
当无法计算算法复杂度时,例如算法包含难以分析的C代码,可使用 timeit
或 profile
装饰器,并提供足够的输入数据来测试算法效率。练习Big - O可访问: http://pages.cs.wisc.edu/~hasti/cs367 - common/notes/COMPLEXITY.html#bigO 。
2. 简化算法复杂度
为降低算法复杂度,数据存储方式至关重要,需谨慎选择数据结构。
2.1 列表搜索
若要为列表实例提供搜索算法,对排序后的列表进行二分搜索可将复杂度从O(n)降至O(log n)。可使用 bisect
模块,示例代码如下:
import bisect
def find(seq, el):
pos = bisect.bisect(seq, el)
if pos == 0 or (pos == len(seq) and seq[-1] != el):