简介
对Llama-3.2–3B 等大型语言模型进行微调可以显著提高它们在自定义数据集上的性能,同时通过LoRA(低秩自适应)等高效方法减少计算开销。使用Unsloth(一种旨在优化和简化流程的尖端工具包),我们可以有效地对自定义数据上的 Llama-3.2–3B-Instruct 进行微调。在本教程中,我们将指导您完成该过程的每个步骤,解释核心代码和概念,同时提供有关如何在您自己的自定义数据集上执行此操作的详细说明。
推荐文章
-
《CUDA 编程之 03 自定义 MNIST MLP 引擎》 权重1,cuda类
-
《赋能知识图谱形成:利用 BERTopic、DataMapPlot 和 Mistral AI 揭示见解(教程含完整代码)》 权重3,知识图谱类
-
《Langflow系列教程之 02 如何将您的 Langflow 原型转变为 Streamlit 聊天机器人应用程序,了解如何将 Langflow 流程转变为功能齐全的基于 Streamlit 的对话聊》 权重1,本地类、Langflow类、Streamlit类
<