简介
在我们探索家庭用电数据模式之后,本文介绍了七种不同预测模型的实施和比较,从简单的统计方法到高级神经网络。
在上一篇文章中,我们深入探讨了家庭数据中的用电模式。现在到了激动人心的部分:构建能够真正预测未来用电量的模型。
这为什么重要?准确的电力预测有助于公用事业公司更好地规划,帮助房主节省开支,并支持可再生能源的整合。随着智能家居越来越普及,预测何时用电、用多少电的能力变得越来越重要。
我们测试了七种不同的方法,从简单的统计方法到尖端的深度学习模型。本文阐述了我们如何构建和比较这些模型,我们面临的挑战,以及如何确保在差异巨大的方法之间进行公平的比较。
推荐文章
-
《Pytho机器学习之预测温室气体排放 (教程含源码)》 权重1,机器学习
-
《3D系列教程之使用 Python 和 Meshroom 进行 3D 重建教程 快速学习通过照片创建3D模型,并掌握使用Python+Meshroom(摄影测量)生成点云》 权重2,Meshroom类、 Python类、点云类