文章目录 1 使用配置管理工具 1.1 集中管理配置数据(JSON/YAML) 2 数据类与类型提示 2.1 使用 `dataclasses` 结构化数据 3 数据验证库 (Pydantic) 3.1 运行时数据校验 4 依赖注入容器 4.1 解耦数据源与业务逻辑 5 数据访问层 (Repository Pattern) 5.1 抽象数据访问接口 6 环境变量管理 (python-dotenv) 6.1 敏感数据隔离 7 单例模式共享全局状态 7.1 安全共享全局数据 8 总结 各位老板好, 在Python中高效管理各种数据,提高复用性和可维护性,可以采用以下高效的的方法 1 使用配置管理工具 1.1 集中管理配置数据(JSON/YAML) # config.json { "database": { "host": "db.example.com", "port": 5432