Swift 对称二叉树

给定一个二叉树,检查它是否是镜像对称的。

例如,二叉树 [1,2,2,3,4,4,3] 是对称的。

我们使用递归法解决此问题

代码如下:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public var val: Int
 *     public var left: TreeNode?
 *     public var right: TreeNode?
 *     public init(_ val: Int) {
 *         self.val = val
 *         self.left = nil
 *         self.right = nil
 *     }
 * }
 */

class Solution{

           

            func isSymmetric(_root:TreeNode?)->Bool{

                  if root==nil{

                        return true

                  }

               return Symmetirc(p:root?.left,q:root?.right)

           }

//判断两个节点是否对称

          func Symmetric(p:TreeNode?,q:TreeNode?)->Bool{

                     if p==nil,q==nil{

                               return true

                     }

                    if p==nil||q==nil{

                               return false

                    }

                  return p?.val==q?.val,Symmetric(p:p?.left,q:q?.right),Symmetirc(p:p?.right,q:q?.left)

         }

 

}

 

### 对称二叉树的定义 对称二叉树,又称镜像二叉树,是一种特殊的二叉树结构。其特性在于整棵树在其根节点处呈现完全对称的状态。具体来说,对于树中的每一个节点,其左子树与右子树在结构和节点值上均需满足镜面对称的关系[^3]。 这意味着,如果我们将一棵二叉树沿其中心线折叠,左侧部分应能与其右侧部分完美重合。这种性质不仅适用于整个树,还适用于每一层的局部子树。 --- ### 判断对称二叉树的方法 #### 1. **递归方法** 递归方法通过构建一个辅助函数 `isMirror` 来比较两棵子树是否互为镜像。核心逻辑如下: - 若两棵子树均为 `None`,则认为是对称的。 - 若仅有一方为 `None` 或者两者值不同,则不对称。 - 若当前节点值相同,继续递归检查左子树的左孩子与右子树的右孩子,以及左子树的右孩子与右子树的左孩子是否对称。 以下是基于 Python 的递归实现代码[^4]: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def isSymmetric(self, root: TreeNode) -> bool: if not root: # 如果根节点为空,视为空树,返回True return True def is_mirror(left, right): if not left and not right: # 左右子树都为空,对称 return True if not left or not right: # 一方为空另一方不为空,不对称 return False if left.val != right.val: # 值不同,不对称 return False # 继续递归检查外侧和内侧是否对称 outer = is_mirror(left.left, right.right) inner = is_mirror(left.right, right.left) return outer and inner return is_mirror(root.left, root.right) ``` 此代码实现了完整的递归过程,并利用了分治的思想来逐步缩小问题规模。 --- #### 2. **迭代方法** 除了递归之外,还可以采用队列或栈的方式来进行层次遍历并验证对称性。这种方法避免了递归可能带来的堆栈溢出风险,尤其适合于深度较大的二叉树。 基本思路是将待比较的节点成对加入数据结构中,在每次循环时取出一对节点进行对比。若发现任何一处不符合对称条件,则立即终止程序并返回 `False`;否则直到队列清空为止皆未发现问题,则返回 `True`。 下面展示了一个使用双端队列(deque)完成这一操作的例子[^5]: ```python from collections import deque class Solution: def isSymmetric(self, root: TreeNode) -> bool: if not root: return True queue = deque([(root.left, root.right)]) while queue: node1, node2 = queue.popleft() if not node1 and not node2: # 两个节点都是None continue if not node1 or not node2: # 只有一个节点是None return False if node1.val != node2.val: # 节点值不同 return False # 将需要进一步比较的节点按顺序压入队列 queue.append((node1.left, node2.right)) queue.append((node1.right, node2.left)) return True ``` --- ### 总结 无论是递归还是迭代方式,其实质都在逐级检验每一对对应位置上的节点是否具有相同的属性。前者更直观易懂但也存在潜在性能隐患;后者虽然稍显复杂却更加稳健可靠。实际应用时可根据具体情况灵活选用合适的技术手段。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值