医疗领域机器学习与深度学习技术应用及安全隐私保护
1. 医疗领域机器学习方法
1.1 无监督学习
无监督学习使用未标记的特征集合来训练数据,模型旨在在没有任何外部指导的情况下将其分类为具有相似特征的小组。这种学习围绕利用未标记数据展开,聚类技术是最常用的机器学习应用。像降维和特征学习等算法,通常借助自动编码器(AE)来实现。当 AE 作为端到端优化任务融入通信系统的物理层时,神经网络内的输入可被视为 AE 的一种特殊情况。K - 均值聚类是另一种无监督学习算法,研究表明,在无线网络系统中,优化的 K - 均值聚类、高斯混合模型和期望最大化(EM)算法的组合比基于能量向量的算法效果更好。
1.2 强化学习
强化学习或近似动态学习是基于奖励的学习,方法通过给定的观察进行学习。如果所采取行动的响应属于正确类别,则会给予奖励,这个过程会重复进行以训练模型。强化学习在医疗保健领域有众多应用,包括关键医疗中的治疗方案、慢性病以及从临床数据进行自动医学诊断等。
1.3 监督学习应用示例
ML 技术 | 算法/学习模型 | 医疗组件 | 移动和无线通信应用 |
---|---|---|---|
监督学习 | 线性回归、支持向量机(SVM) | 异常检测 | 用于对传入无线传感器中的异常实例进行分类,并预测异常实例,以确定患者是否进入关键阶段,或传感器是否报告错误读数 </ |