48、深度学习在医疗保健信息学中的应用与挑战

深度学习在医疗保健信息学中的应用与挑战

1. 深度学习应用的工具和库

在深度学习应用领域,有多个优秀的工具和库可供选择:
- Caffe :由加州大学伯克利分校开发的深度学习框架,提供C++和Python接口。它具有模块化、表达性强、速度快且支持多GPU的特点。
- Keras :于2015年发布,是用Python编写的库,可使用Theano或TensorFlow作为后端。它包含了许多常用神经网络构建块的实现。
- MXNet :Apache MXNet是另一个开源的深度学习框架,用于构建、训练和部署深度神经网络。它提供八种语言绑定(Python、Scala、Julia、Clojure、Java、C++、R和Perl),并支持分布式计算,包括多GPU。
- TensorFlow :由谷歌开发的端到端开源机器学习平台,用于各种深度学习应用,帮助开发者构建、训练和部署机器学习应用。
- PyTorch :由Facebook的AI研究实验室基于Torch库开发的机器学习库,和Caffe一样提供Python和C++接口。许多深度学习软件基于PyTorch构建,用于计算机视觉和自然语言处理等应用。
- Theano :一个Python库和编译器,用于处理和评估涉及多维数组的数学表达式,利用了NumPy的高效代码库,由蒙特利尔大学的MILA小组开发。

以下是用于疾病预测的预训练模型表格:
| 作者 | 分类的疾病 |

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值