52、COVID-19 CT 图像识别与分析的深度学习模型研究

COVID-19 CT 图像识别与分析的深度学习模型研究

1. 提出的模型

1.1 卷积神经网络(CNN)

卷积神经网络(CNN)是一种深度学习(DL)模型,主要用于图像分析和分类。它由一个或多个卷积层、池化层和全连接层组成,在手写识别、医学图像处理、情感分析等领域有广泛应用。CNN 能够处理图像分类中的噪声图像,还能解决数据集中的过拟合问题。例如,Nahid 等人提出了一个用于识别肺炎的图像处理模型,他们在 CNN 框架中使用 X 射线图像,准确率达到了 97.2%。在本研究中,也采用 CNN 模型进行 COVID - 19 图像识别,其参数如下表所示:
| 参数 | 值 |
| — | — |
| 学习率 | 0.001 |
| 隐藏层 | 32 |
| 批量大小 | 32 |
| 池化 | 二维最大池化 |
| 激活函数 | Softmax |
| 类别数量 | 2 |
| 优化器 | Adam |

1.2 迁移学习

迁移学习是利用一个任务的经验来提高另一个任务的通用性。它将先前训练好的 DL 模型的知识迁移到新的任务中。在计算机视觉处理中经常使用,特别是在标记数据太少而无法从头训练模型的情况下。迁移学习有以下两种策略:
- 作为特征提取器 :DL 网络是分层架构,多层学习不同的特征。所有层连接到最后一层(全连接层)以获得最终结果。对于其他模型,可以使用去掉最后一层的 DL 模型作为固定的特征提取器。
- 微调 :在这种迁移学习方法中,替换网络的最后一层,并选择性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值