李航《统计学习方法》第4&9章 朴素贝叶斯分类器&EM算法

本文详细介绍了朴素贝叶斯分类器的基本原理,包括其独立假设、极大似然估计的学习参数方法以及贝叶斯定理在预测中的应用。同时提到了贝叶斯估计在解决概率为0问题时的作用,并简单提及了当特征条件不独立时的贝叶斯网络,以及将要介绍的EM算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朴素贝叶斯(naive Bayes)定义

  • 基本假设
    输入x为n维向量,输出y取值在{c1,…,ck}K个值范围内,训练集样本个数N,假设样本独立同分布,且
    特征条件独立 。具体的:
    P(X=x|Y=ck)=P(X(1)=x(1),,X(n)=x(n)|Y=ck)=nj=1P(X(j)=x(j)|Y=ck)

由于这一假设,朴素贝叶斯的学习大为简化,但对分类性能有一定影响

  • 学习参数
    极大似然估计来学习先验概率分布P(Y=ck)以及条件概率分布P(X=x|Y=ck)=P(X(1)=x(1),,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值