盛最多水的容器 LeetCode 11

题目: 

        给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

实例:

输入:[1,8,6,2,5,4,8,3,7]
输出:49

方式1:非常的简单,从第二个数开始,依次计算和前面的相比。

class Solution {
public:
    int maxArea(vector<int>& height) {
        int MaxValue=0;
        int SIZE=height.size();
        for(int index=1;index<SIZE;index++)
        {
            for(int begin=0;begin<index;begin++)
            {
                int temp=min(height[begin],height[index]);
                {
                    int tempSum=temp*(index-begin);
                    if(MaxValue<tempSum)
                        MaxValue=tempSum;
                }
            }
        }
        return MaxValue;
    }
};

 


方式2:双指针,一个在左边,一个在右边,比较左右两边的比较小的数字,然后将小的数字那边替换掉。

    为什么会是这样勒?例如,左右两边的数字分别是,x y,假设x<y。间距是t 那么他们之间的水的容量是:

                                                                         min(x,y)∗t=x∗t

  上面的 情况是左指针的值比较小,如果左指针的值保持不变,那么右指针无论向前面移动多少,都不可能比这个值更大了。x 和y之间的最小值只能比x小,不可能比x大,同时间距只会变小,不会变大,所以总的结果是只可能变小。这个时候就要移动左指针的值了。

   同理,如果是右指针的值要小,就移动右指针的值。如果左右指针指向的值一样大,那么他们可以同时移动。

   有句很精辟的解释是: 每次都移动最差的一边,虽然可能变的更差,但是总比站着不动要有希望。

   逃离舒适区,虽然可能会变的更差,但是有可能会变的更好~!

class Solution {
public:
    int maxArea(vector<int>& height) {
        int MaxValue=0;
        int SIZE=height.size();
        int LeftIndex=0;
        int RightInde=SIZE-1;
        while(LeftIndex<RightInde)
        {
            int tempWaterValue=min(height[LeftIndex],height[RightInde])*(RightInde-LeftIndex);
            if(tempWaterValue>MaxValue)
                MaxValue=tempWaterValue;
            if(height[LeftIndex]<height[RightInde])
            {
                LeftIndex++;
            }else
            {
                RightInde--;
            }
        }
        return MaxValue;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值