10、基于 Apache Mahout 构建推荐引擎

基于 Apache Mahout 构建推荐引擎

1. 推荐系统概述

推荐系统在机器学习和数据挖掘领域是一个活跃的研究方向,在数据科学会议中也有专门的讨论。存在多种混合技术,如加权、切换、混合、特征组合、特征增强、级联、元级别等。Adomavicius 和 Tuzhilin(2005)在论文中对推荐系统技术进行了很好的概述,讨论了不同的方法和底层算法,并提供了更多论文的参考。

在推荐系统中,存在“利用”与“探索”的权衡。“利用”是指根据对用户的已有了解,推荐符合用户偏好的项目;“探索”则是推荐不在用户偏好范围内的项目,以让用户接触新事物。探索性不足的推荐系统只会推荐与用户先前评分一致的项目,而实际中,为用户提供超出其偏好范围的项目带来的意外惊喜往往是理想的,可能会发现用户新的偏好。

2. 获取 Apache Mahout

Mahout 是一个可扩展的机器学习库,它提供了丰富的组件,可用于从一系列算法中构建定制的推荐系统。Mahout 可以配置为两种运行方式:使用 Hadoop 进行分布式处理或不使用 Hadoop 进行单机处理。这里我们将重点关注不使用 Hadoop 的配置。

由于 Apache Mahout 的构建和发布系统基于 Maven,我们需要学习如何安装它。下面介绍使用带有 Maven 插件的 Eclipse 进行安装的便捷方法:
1. 从 Eclipse 主页下载最新版本的 Eclipse,这里使用 Eclipse Luna。
2. 打开 Eclipse,按照默认设置启动一个新的 Maven 项目。
3. 找到 pom.xml 文件,用文本编辑器打开(左键点击“Ope

资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,与人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成和合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别和深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取和描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式和规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像和视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活和工作方式 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值