析取演绎数据库的部分证据稳定模型
1. 引言
稳定和部分稳定模型的语义是析取数据库中最突出的语义之一。然而,存在一些逻辑上一致的数据库,在这些语义下却是不一致的。对于普通数据库(可能包含否定但不包含析取),部分稳定模型语义总是一致的,并且等同于van Gelder、Ross和Schlipf提出的有根语义。
对于大型数据库,小的不一致部分可能会阻碍稳定模型甚至部分稳定模型的存在。因此,我们将引入稳定模型语义的两个新变体:
- 证据稳定模型的二值语义,它比最小模型语义强,但比稳定模型语义弱。
- 三值版本,称为部分证据稳定模型,对于普通数据库,它与有根语义一致。对于分层析取数据库,两种证据语义都与完美模型语义一致。
考虑析取数据库 $P = {r}$,其中规则 $r = q \leftarrow not\ a$。在其两个最小模型 $M_1 = {q}$ 和 $M_2 = {a}$ 中,第一个模型优于第二个。直观地说,原因是在 $M_2$ 中,“$a$” 的真值是通过矛盾推导出来的,即通过使规则的体为假来满足规则。相比之下,在 $M_1$ 中,“$q$” 的真值是从规则的头部构造性地推导出来的。因此,$M_1$ 是 $P$ 的所谓完美模型,被认为是预期模型。
证据转换 $EP$ 是一个正析取数据库,它是通过将默认否定的体文字移到规则头部并在其前面加上 “$E$” 从 $P$ 派生出来的。例如,规则 $r$ 被转换为 $q \vee Ea$。此外,还引入了关联原子和证据原子的规则:$Eq \leftarrow q$,$Ea \leftarrow a$。
证据稳定模型被定义为 $EP$ 的最小Herbrand模型 $I$,使得 $