析取逻辑编程与自认知逻辑
1. 内省
内省是根据主体对世界的看法来修正其信念的过程。例如,Moore 使用稳定扩张 T 来对自省推理进行建模:
[T = {φ | A ∪{Bα | α ∈T} ∪{¬Bα | α ∉T} ⊢ {KD45} φ}]
其中,(⊢ {KD45}) 表示在逻辑 KD45 下的推导。({Bα | α ∈T}) 和 ({¬Bα | α ∉T}) 分别表示主体的正内省和负内省。
1.1 正内省与负内省
正内省是指当 α 可以被推导出来时,得出信念 (Bα) 的过程;负内省则是当 α 无法被推导出来时,得出不信 (¬Bα)(或 (B¬α))的过程。正内省通常通过引入必然化规则来实现:
- 必然化规则 (N) :
[\frac{α}{Bα}]
负内省对于不可推导性的解释有多种,两种典型的方法是:
1. 基于一致性的内省 :如果 (¬α) 与 A 一致(即 (A \nvdash_{KD} α)),则推导出 (¬Bα)。
2. 基于最小模型的 p - 内省 :如果 (¬α) 在 A 的每个视角理论的每个最小模型中都为真,则推导出 (¬Bα)。
封闭世界假设、默认逻辑和 Moore 的自认知逻辑使用基于一致性的负内省。这种方法通常会导致更强的负内省,因为可能会得出更多的不信结论,但许多合理的理论并不具有一致的内省扩张。而基于最小模型的内省则存在与最小模型蕴含相关的固有困难。