29、析取逻辑编程与优先默认推理研究

析取逻辑编程与优先默认推理研究

析取逻辑编程语义拓展

在析取逻辑编程领域,对其语义和语法进行了拓展。从语法上,定义了双析取程序类,它包含析取程序,可视为超级逻辑程序的子类。语义方面,为双析取程序建立了基于论证理论的框架BDAS,这是一个简单、统一且直观的析取逻辑编程框架。

在BDAS中,通过三种可接受假设定义了双析取程序的三种语义PDH、CDH和WFDH,分别代表人工智能中的轻信推理、适度推理和怀疑推理。BDAS不仅具有强大的表达能力和非确定性,还整合并自然扩展了许多关键语义,如最小模型、EGCWA、有根模型和稳定模型。

下面通过一些引理和命题来进一步说明相关概念:
- 引理6.3 :对于任何析取程序P,相对于BDAS,P与res(P)等价。特别地,WFDH(P) = WFDH(res(P))。
- 命题6.5 :WFDH比D - WFS的怀疑程度低。即D - WFS(P) ⊆ WFDH(P),但一般情况下‘⊆’不能替换为‘=’。

D - WFS和WFDH存在一些其他差异,具体如下表所示:
|语义|特点|示例说明|
|----|----|----|
|D - WFS|若α =∼a1| · · ·| ∼ar是P的析取假设且α ∈ D - WFS,则至少存在一个i(1 ≤ i ≤ r)使得∼ai ∈ D - WFS(P);对于程序P = {a|b ←},D - WFS(P)不包含负(析取)文字|/|
|WFDH|允许得出“真”的析取信息;对于程序P = {a|b ←},∼a| ∼b ∈ WFDH(P),即使∼a ∉ WFDH(P)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值